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Abstract, Kurzfassung

(engl.) Both information visualization and statistics analyse high dimensional data, but these
sciences provide different ways to explore datasets. The information visualization is
a branch of the field of computer graphics and creates graphics of the datasets that
in general contain more than three dimensions to provide insight to the behaviour
of the data. Because of the high dimensionality the data items usually do not show
any inherent spatial reference, which poses a special challenge to visualize the entire
data. Additionally interaction possibilities are provided to adapt the graphics to the
needs of the user. This allows the visual exploration and the extraction of the intrinsic
information of the data.
In contrast to that statistics execute algorithms that provide numerical summaries of
the analysis of the datasets. Based on the knowledgeable theory of data exploration
the results of those methods allow making statements about the datasets and provide
a hint for their validity.
As both sciences pursue the same aims, it is a consistent consequence to combine
methods of information visualization and statistics to achieve a more efficient explo-
ration of multivariate data, which is also called data mining. Therefore this work
surveys the most important tools provided by both disciplines to analyse high dimen-
sional data. Furthermore existing applications using techniques of the field of statistics
and of the information visualization are presented.
But the main contribution of this work is to provide statistical methods for visual
data mining applications. Therefore a library was compiled that contains routines,
which are of high importance for information visualization techniques and allow a
fast modification of their results, to integrate possible adaptations in the visualization.
The library is able to work on datasets containing millions of data items and hundreds
of dimensions.
In addition an example application is introduced that demonstrates a possible inter-
weaving between statistical methods and information visualization techniques. Tasks
like the detection of outliers, the grouping of data items and attributes as well as the
reduction of the dimensionality were incorporated.
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Abstract, Kurzfassung ii

(deut.) Sowohl die Informationsvisualisierung als auch die Statistik beschäftigen sich mit der
Analyse von hochdimensionalen Daten, wobei beide Wissenschaften unterschiedliche
Wege beschreiten. Die Informationsvisualisierung ist ein Teilgebiet der Computer-
graphik und erstellt aus Datensätzen, die üblicherweise mehr als drei Dimensionen
aufweisen, Grafiken, die Einsicht in das Wesen der Daten geben sollen. Aufgrund
der hohen Dimensionalität weisen die Datenpunkte oft keinen inhärenten räumlichen
Bezug auf, weshalb die besondere Herausforderung in der Darstellung der Gesamtheit
der Daten liegt. Zusätzlich werden Interaktionsmöglichkeiten zur Verfügung gestellt,
um die Grafiken an die Bedürfnisse des Benutzers anzupassen. Somit ist es möglich,
die Daten visuell zu erforschen und die wesentlichen Informationen zu extrahieren.
Im Gegensatz dazu bedient sich die Statistik der Ausführung von Algorithmen, die nu-
merische Zusammenfassungen des zu untersuchenden Verhaltens der Daten erstellen.
Basierend auf den fundierten theoretischen Betrachtungen der Datenanalyse erlauben
diese Ergebnisse, Aussagen über die analysierten Datensätze zu treffen und zusätzlich
festzustellen, mit welcher Wahrscheinlichkeit diese Aussagen Gültigkeit besitzen.
Da beide Wissenschaften die selben Ziele verfolgen, ist es eine logische Konsequenz
Methoden der Statistik mit den Techniken der Informationsvisualisierung zu kom-
binieren, um bessere und effizientere Analysen der Daten vornehmen zu können.
Diese Arbeit gibt daher einen Überblick über die wichtigsten Werkzeuge, welche von
der Statistik und der Informationsvisualisierung für die Exploration von hochdimen-
sionalen Daten bereitgestellt wird. Außerdem werden bereits existierende Anwendun-
gen, die Techniken aus beiden Disziplinen vereinen, vorgestellt.
Das primäre Ziel dieser Arbeit ist es aber, statistische Methoden für Applikationen
der Informationsvisualisierung zur Verfügung zu stellen. Dafür wurde eine Biblio-
thek an Routinen zusammengestellt, die zum einen als besonders wichtig für die vi-
suelle Datenexploration gelten und zum anderen eine Modifikation ihrer Parameter
und eine rasche Neuberechnung zulassen, so dass Änderungen für die Visualisierung
übernommen werden können. Diese Bibliothek ist darauf ausgerichtet Datensätze, die
Millionen von Datenpunkten und Hunderte von Dimensionen enthalten, zu bearbeiten.
Zusätzlich wird in einer Beispielapplikation eine mögliche Verflechtung zwischen sta-
tistischen Routinen und verschiedenen Visualisierungsformen demonstriert. Hierbei
wurde besonderes Augenmerk auf die Erkennung von Ausreißern, das Gruppieren von
Datenpunkten und Dimensionen sowie die Dimensionsreduktion gelegt.
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Chapter 1

Introduction

In the second half of the past century the capabilities of computers grew tremendously and ac-
cording to this development the size of the datasets that could be handled increased significantly.
Nowadays it is commonplace to work with millions of data items that are defined in thousands
of dimensions. Datasets of this scale are gathered in digital libraries, during simulations, for the
analysis of genetic data or by surveys. Consequently the exploration of the given mass of data
items and the drawing of conclusions is a crucial working area, which will furthermore gain
importance.

The next sections discuss common tasks in a data exploration process and outline ap-
proaches from the fields statistics and information visualization that allow the user to accom-
plish them. Furthermore a collaboration between those sciences is encouraged and an approach
how this can be fulfilled is outlined.

1.1 Common Data Exploration Tasks

An example posing challenges for the exploration and the filtering of the main information
of the data is the examination of unstructured text documents. As the number of documents
in digital libraries as well as in the world wide web is increasing rapidly their analysis and
categorization gained importance in recent years. Common tasks are the detection of spam
emails or the classification of documents according to their relevance for a given search key.
To accomplish this a single text is stored as a vector of word counts. Because ten thousands of
vocables are considered such a dataset contains a large number of attributes.

An initial analysis that can be accomplished on such a dataset is the detection of the
main categories of documents and their properties. Categories of documents could be fairy
tales, scientific publications as well as newspaper articles. Their features may be exceptional
frequencies of uncommon vocables or word combinations as well as a significant pattern of

1



1.1. COMMON DATA EXPLORATION TASKS 2

word counts. A similar task is the identification of documents that are displaced, because their
content does not match the topic of a digital library, or that are exceptional with respect to a
user defined property.

Of course categorizations can not be fulfilled by examining the dataset itself in a text
representation. Thus techniques have to be applied that allow the extraction of the needed
information from the data. Both the field of statistics as well as the information visualization
provide functionality to deal with the complex process of exploring multivariate data, which is
also called data mining.

The statistical analysis of data is applied for centuries. Thus a huge variety of methods
and a profound theoretic foundation for the data exploration has been introduced. But foremost
with the rising capabilities of computers the creation of statistical routines that analyse large
datasets was initiated. These algorithms provide numeric summaries that capture the informa-
tion of interest. Examples are statistical estimators specifying location or spread of data as well
as models for predicting values of variables.

For the analysis of documents routines can be applied that find the major groups in the
data by focussing on objects showing the same patterns. These procedures are called clusterings
and provide a summary of the trends in the data by calculating the centers of the detected groups
holding the average behaviour of the data items of a cluster. Thus the user can identify the most
important word count patterns in the dataset and can assign the documents captured by one
cluster to a certain text category.

Information visualization techniques try to achieve this result by applying other means.
As the visualization is a branch of computer graphics images and animations based on the prop-
erties of the data are created. The key element is that the extraordinary pattern recognition
capabilities of the human visual system are used to identify outlying values, groups in the data
or other features of special interest. Because the field of information visualization analyses mul-
tivariate datasets, there is usually no inherent reference to the three dimensional space. Thus it
is a tremendous challenge to capture the high dimensional information in a 2D illustration. A
variety of techniques has been developed that focus on different aspects of the data to accom-
plish this task. But the created graphics can also be interactively modified to the needs of the
user. Zooming and selection techniques allow focusing on a subset of data items and thus the
inspection of their behaviour.

Thus a selection approach can be applied to interactively browse the properties of doc-
uments in a digital library. By defining constraints that a text must fulfil, for example certain
word count values, subgroups in the data can be identified and explored.

But as both sciences have their strengths, each technique has also disadvantages to over-
come. Visualization approaches clearly suffer that the user is not able to interpret high dimen-
sional features, because humans are used to think in three dimensional spaces. Furthermore
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restrictions in the screen space do not allow showing all data items or all dimensions of a
dataset without cluttering. In contrast to that statistical routines in general perform well if the
data applies to a theoretic distribution like the multivariate normal distribution. Of course this
constraint is not fulfilled by the datasets that should be analysed. Another issue is that algo-
rithms like a chosen cluster procedure may not be adequate for the structure of the data. But
it is not trivial to find out, whether this is the case, and which alternative algorithm could be
applied.

These observations can be easily demonstrated by the task of exploring text documents.
The high dimensionality makes a visual examination of these datasets containing up to a mil-
lion of documents difficult, because the presentation of all dimensions exceeds the visualization
space. Even the illustration of the most important dimensions does not allow an efficient pattern
recognition and the pruned dimensions may hold essential information. The numerical inspec-
tion is also limited due to the curse of dimensionality, which leads in this case to a sparse data
space. The large number of vocables includes words that are only used by a small subset of
documents. This circumstance causes data mining algorithms to fail, because large groups of
dimensions hold the same information for the majority of the data items.

As these examples show, a combination of different approaches could be useful to over-
come the disadvantages of the applied techniques. This concept is also encouraged by the fact
that both sciences show similar aims but use different ways to reach them. Statistical routines
use the possibilities of today’s computers to process a high number of calculations. The results
are presented in numerical outputs that the user has to interpret to obtain new knowledge. The
visualization uses the fast computers to create interactive graphic interfaces that can be adapted
to the user’s needs within fractions of a second. This procedure allows new insights into the data
by identifying patterns visually. Consequently if one approach fails, the other can compensate
this failure, because it relies on a different system.

But although statistics and visualization developed techniques to identify groups or outly-
ing values in high dimensional data, only hesitantly approaches were made, where the strengths
of these fields are combined to achieve more efficient data mining applications. This work is
intended to contribute to the development of tools connecting the strong theoretic fundamentals
and efficient calculation of numerical facts from the field of statistics with the capabilities of
visual representation and the interactive nature of information visualization.
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1.2 Integrating Statistical Functionality into Information Vi-
sualization

One way to achieve an efficient combination of statistical routines and visualization techniques
is to compile and adapt the statistical functionality in a library so that information visualization
approaches can call those routines according to their needs. For this purpose special attention
has to be paid on the incorporation of so called hooks of interaction, which allow immediate
updates of numerical summaries that are used again for the visualizations. Thus the interac-
tion techniques applied in the views of a visual data mining application have to be translated to
common function calls of statistical routines. This is a necessity to allow the interactive collab-
oration of statistical functionality and user interaction, which is crucial to exploit the previously
outlined compensation of possible failures of one technique.

To accomplish this approach of integration the statistical procedures that should be con-
sidered for such a library have to be determined. As the field of statistics provides a large range
of methods to analyse data, research has been made to evaluate which functionality is most
relevant for information visualization applications. Hence popular visual data exploration tools
like SpotFire [7] were tested with respect to the provided statistical routines. Furthermore the
recent publications of the field of information visualization that focus on statistical calculations
were considered to create a list of useful methods for a visual data mining tool.

In the scope of this work the tasks clustering and outlier detection were focused, because
the detection of the main trends in the data and the segregation of objects that obviously are
not part of the data itself are central working steps in a data mining application. Furthermore
for these operations the benefit of a collaboration of both sciences is tremendous. Because the
work with high dimensional data poses challenges for visualization techniques as well as for
statistical routines a dimension reduction technique is also a central functionality of the created
library. As those statistical routines need an adequate data preparation, a set of transformations
is implemented, that maps the data values to certain intervals or distributions. Besides these
tasks standard calculations like statistical moments, correlation and distance measures as well
as hypothesis tests were realized.

To give an explanation of the usefulness of this statistical functionality within a visual
data mining application several examples are given, that suggest possible integration scenarios
and their advantages in comparison to the separated use of the techniques. But also a sample
application that picks up some of these proposed ideas was implemented and demonstrates
how the statistical routines interweave efficiently with visualization approaches. This system
especially features on interactive visual outlier detection, feature subset selection and clustering.

Although the techniques of both sciences are enhanced to provide functionality for col-
laboration, this work is not intended to improve statistical routines by modifications or to intro-
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duce new methods that are especially suitable for visual exploration. The same applies to the
techniques of information visualization. The work shows how the combination of both fields
can help to overcome the drawbacks of single procedures. It is not denied, that both fields are
introducing new developments that compensate the shortcomings of techniques, by the means
of their science. But nevertheless an interactive collaboration between a statistical and a visual-
ization approach may solve those problems efficiently.

1.3 Organization of this work

To provide an overview about the main techniques of information visualization and statistical
routines, the next section outlines the major contributions of these fields for data exploration.
This state of the art report concentrates mainly on clustering, outlier detection and dimension
reduction. For those tasks also existing applications are introduced, that focus on the collabora-
tion between statistics and visualization.

In section 3 the most important statistical definitions and algorithms, which are compiled
in the statistics library are stated.

The strengths and weaknesses of statistical routines and information visualization tech-
niques are analysed as well as an outline of the benefits of possible collaborations between
both fields are presented in section 4. To accomplish the latter also specific examples based on
existing functionality are depicted.

The statistical library containing the base functionality for information visualization ap-
plications is introduced in section 5. There an explanation is given why the implemented rou-
tines were chosen. Furthermore the functionality of the sample application is outlined. Proof of
concept cases, where this application demonstrates the work of the integrated statistical routines
in common visualizations on real datasets, are discussed in section 6.

Attention on issues of the implementation of the library as well as on the work with large
datasets is paid in section 7. Also the use of parameters in the corresponding function calls and
the runtime of central routines are stated.

In chapter 8 the work is summarized and the main contributions are accentuated. Finally
the work is concluded in section 9, where necessary developments for the successful integration
of statistical functionality in information visualization applications are addressed.



Chapter 2

State of the Art

Both areas - Visualization and Statistics - provide different ways to analyse data. In this section
short overviews about the routines and techniques of both fields are given. Afterwards an exten-
sive discussion of the state of the art concerning the combination of information visualization
and statistical data exploration algorithms is presented.

2.1 Visualization Techniques

In the last 20 years visualization was a tremendously growing research field, where a huge
variety of methods for presentation and visual exploration of datasets was developed. According
to the increasing number of operations that computers can execute in short time the possibilities
of visualizations grew and the interaction between humans and the visual representation gained
focus. Additionally the explosion of the data size posed the challenge of providing different
views that are linked together as well as allowing interactive modifications that give feedback in
a few seconds, while handling millions of data items. This short overview introduces the most
popular techniques for the visual data exploration of high dimensional data. The discussed
visualization types focus on different aspects of datasets and thus are often used in combination
to provide different insights in the processed data. To give a clear discussion of the various
techniques a subdivision of the approaches into four categories according to [55] is made.

2.1.1 Geometric Projection Techniques

Geometric projection techniques map dimension values on screen space positions. Primitives,
like points or polylines that represent data items are drawn so that they apply to the mapped
attribute values of the objects.

6



2.1. VISUALIZATION TECHNIQUES 7

An intuitive way to visualize data are two-dimensional plots, where the values of two at-
tributes are mapped on the x and on the y axis respectively and the data items are represented as
points in the area spanned by the two perpendicular axes. This visualization is called scatterplot
and has the advantage, that structures in the shown dimension pair can be detected very fast,
because the human is used to think in spaces with Cartesian coordinates. The same applies to
three dimensional scatterplots [92], where interaction techniques have to be integrated to allow
the user the navigation through the 3D space. Without interaction misleading conclusions can
be drawn caused by occlusions or effects of the perspective projection introduced to depict the
three dimensional space. While patterns like correlations, outlying data items or groups can be
easily detected, the main problems of this technique are the overplotting, meaning that the user
can not identify how many objects are depicted at a plotting coordinate, and the representation
of only two variables and thus only two dimensional patterns.

To provide insight in a high dimensional dataset the scatterplot-matrix [27] was intro-
duced, which shows all attributes by plotting the data points in a scatterplot view for each
dimension pair. The scatterplots are placed as tiles of a matrix, where each view of a row holds
the same attribute mapped on its y axis. Analogously each visualization in a column displays
the same variable on its x axis. As the plots in the main diagonal would show the identity one
dimensional visualizations like histograms or boxplots can be used to depict the distribution of
the dimension values. Although scatterplot-matrices are capable to represent all attributes of a
multivariate dataset, multivariate patterns can not be detected immediately.

Prosection views [44] are an extension of the projection technique of scatterplots by
additionally using selections that represent sections of the data space with a low dimensional
object. This combination of projections and sections is able to display structures of higher
dimensionalities. Nevertheless the same intuitive data exploration, that the scatterplot technique
provides, is only possible for experienced users.

The most popular geometric projection visualization for displaying high dimensional data
is the parallel coordinates [60] view. To achieve this, the p attributes of a p dimensional dataset
are drawn as parallel vertical lines that are uniformly spaced on the xy-plane. The values of
each variable are linearly mapped on y positions for each axis separately, so that the minima of
the dimension values are on the lower or upper end and the maxima on the upper respectively
the lower end of the drawn axis. A data item is represented by a polyline connecting the values
of the object on each dimension by intersecting the corresponding axis at the appropriate y
position.

The major advantage of this technique is the possibility to visualize high dimensional
datasets. The number of the dimensions that can be shown is only limited by the resolution
of the view in the horizontal direction. The drawback that arises from the plot of more than
15 dimensions is that correlations between dimensions and patterns in the dataset itself can no
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longer easily be perceived. Also text information showing the names of the attributes as well as
their minima and maxima can not be presented for each dimension.

The drawbacks of the parallel coordinates are that an attribute can only have two neigh-
bouring dimensions and that a high number of data items can make it impossible to detect any
pattern. While for the first disadvantage a simple change in the order of drawn axes can be
performed by the user, the second drawback can not be solved as easily. Solutions for this prob-
lem are introduced by the use of hierarchical parallel coordinates [41], as discussed in further
detail in section 2.3.1 and by heuristics that reveal structures in parallel coordinates views as
discussed by Johansson et al [63].

2.1.2 Icon Based Techniques

Icon based techniques map the attribute values of the data items on the properties of icons, in a
way so that the observer can easily detect differences between them. One of the most famous
approaches are the Chernoff Faces [25] introduced by Herman Chernoff in 1973. They use two
dimensional line primitives to picture a face per data point, where the values of the data item
influence the shape of the face as well as the facial expression. 18 independent features like
the length of the nose or the size of the eyes make the representation of that many dimensions
possible. Additionally the faces can be positioned according to two dimension values on the
xy visualization plane. This representation of data items is justified by the fact that humans are
used to recognize faces and to interpret their expressions. Furthermore it is assumed that users
employ more intense with Chernoff faces as with comparable iconic techniques. Admittedly
studies [83] [79] show this technique does not present significant advantages over other iconic
graphics. Additionally the representation of each data item by a Chernoff Face introduces a
tremendous limitation of the number of data points that can be depicted.

In contrast to Chernoff Faces a visualization of a higher number of data items can be
achieved by Stick Figures [90]. The values of two dimensions are used again to position the
icons on the visualization space. The remaining attribute values are mapped on the angles
of joints and the length of the limbs represented as lines. Large datasets lead to dense Stick
Figure visualizations, which are similar to textures. Monotonic areas of these textures can be
interpreted as clusters, whereas outliers may be detected as single icons in monotonic areas that
have a significant different shape as their neighbouring Stick Figures.

Star glyphs [109] are a further popular icon based technique, that maps the attribute
values of data items on the lengths of lines that leave a point position in evenly spaced directions.
The outer ends of those lines are connected by a polyline. The behaviour of data items is
discriminated by examining the convexity of the outline of these glyphs. Thus outliers can be
detected by comparing the mean glyph shape with those of single data items. Also the main
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trends can be analysed easily by identifying the most frequently appearing convexity patterns.

While the star glyphs can also be seen as a variation of the parallel coordinates, shape
coding [15] is similar to pixel based techniques, because it uses a small two dimensional array
of pixels to depict a data item. The number of pixels corresponds to the number of attributes in
which the object is defined. The colour of the pixels corresponds to the dimension values of the
data point. Usually a border separates the data item representations from each other.

2.1.3 Pixel Based Techniques

Pixel-based visualizations try to represent each data item by one pixel. If the number of pixels
is not sufficient for all objects, several data points are mapped to a pixel. This has the advantage
that a large number of data items can be displayed without cluttering. The values of a dimension
are used for a colour mapping, while each attribute is depicted in a different window. Thus the
user can apply ordering with respect to the values of one variable. The other windows depict
the data items according to their sorting position in this attribute. This allows the detection of
functional dependencies and dimension similarities. To perceive those patterns easily several
pixel arrangement heuristics have been introduced. While line-by-line or column-by-column
alignments are suboptimal, screen-filling curves provide a clustering behaviour of data items
and thus easier pattern detection. An extensive discussion about ordering techniques is given
by Keim [71].

Alternatively to the visualization of each dimension in a separate window, a grouping
technique was introduced, where all dimension values of a data item are depicted in a two
dimensional pixel array [71]. Those arrays can be ordered like the single pixels, but to improve
the pattern recognition they should be separated from each other by a border. This approach
reduces the number of items that can be visualized in one view, and is similar to the shape
coding.

A popular extension of this basic pixel-based approach is the pixel bar charts tech-
nique [70], for which the screen space is divided horizontally and vertically according to the
number of categories that two variables hold. Those attributes are mapped on the x and the
y axis respectively so that the widths and the heights of the introduced regions correspond to
the number of data items that belong to them. If no categories are present a binning can be
introduced. The pixels within a region are coloured according to a user defined attribute. The
values of further two dimensions can be incorporated by arranging the data values within the
regions. The user can interactively specify which variables are used for each of those mapping
operations, which represents a powerful interaction tool for the visual data exploration.

Pixel bar charts combine the concept of bar charts and pixel based visualizations. There-
fore no aggregated data is shown in the bars and the screen space is optimally used, while
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simple bars represent only one value and do not fully cover the visualization space. Thus this
approach can be seen as a generalization of traditional bar charts, because the interior pixels of
the bars are used to visualize single data items of a multidimensional dataset. Additionally the
major advantage of the pixel based visualizations that can depict a large amount of data without
overplotting applies.

2.1.4 Hierarchical Techniques

Hierarchical visualization techniques create illustrations where the dimensions are interleaved.
Therefore a subset of attributes is chosen to allocate the screen space with a common visualiza-
tion technique. The further variables are iteratively nested into this view.

The concept of Worlds within Worlds [38] applies this approach by using two- or three
dimensional coordinate systems to present a subspace of a high dimensional dataset. Into this
initial view other visualizations are embedded to grant the user insight in all dimensions of
interest. Therefore in an already existing coordinate system a new system can be created, which
is called the inner world whereas the system that surrounds the inner world is referred as outer
world. The position of the origin of the inner world specifies the values of the dimensions
mapped on the axes of the outer world. This nested structure of coordinate systems allows
the visualization of high dimensional data, but for exploration purposes interaction techniques
like the change of the allocation of axes, the manipulation of the positions of the origins of
inner worlds as well as the necessary navigation techniques through visualizations of a three
dimensional space have to be integrated.

Dimensional stacking [78] is another approach which embeds dimensions within the vi-
sualization of other attributes. Therefore an iterative discretization of the screenspace is per-
formed. The first dimension is chosen for the horizontal axis, and according to its values the
visualization space is divided into sections delimited by vertical lines. The next attribute is cho-
sen to divide the vertical axis which creates rectangular tiles representing each possible value
combination of the first two dimensions. The rectangles are iteratively subdivided in the same
manner by using the remaining dimensions. This allows the visualization of a large number of
attributes. Each final rectangle is coloured according to the number of data items that shows
the corresponding values of this introduced subsection. This visualization is adequate for cat-
egorical data. Continuous values have to be binned for this technique. It is recommended that
the outer dimensions use small numbers of bins, while the inner attributes can be depicted with
further detail.
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2.1.5 Interaction Techniques

Besides the different types of visualizations also concepts for interactive operations have been
developed, that allow the modification and adaptation of the data illustration. These techniques
are the key elements that make the exploration of datasets possible. According to the visual
information seeking mantra [108] the visualizations themselves are used to give a first overview
of the data. Afterwards interactive zooming and filtering operations are applied to examine
interesting data items and to visually exclude objects of low importance. Details-on-demand
operations can be applied on the selected set of data points to retrieve their attribute values
themselves or alternatively numerical summaries.

Zooming operations help the user to scrutinize interesting patterns in further detail by
enlarging their visualization. Therefore it is useful to apply techniques that also keep track of
the overall context, in which the examined portion of the data is seen. The so called Fisheye
Views [104] provide such smooth distortion techniques that magnify the data items of interest
and reduce the zoom factor step by step for objects farther away from the inspected position.

To filter out uninteresting data items the popular concept of drawing selections is applied,
which is commonly performed via mouse interactions. Therefore the user highlights a set of
data items that is of special interest. In contrast to applying a query on the data items so that
only those are shown that fulfil a set of criteria, this interactive filtering approach provides
instant visual feedback. This means during the process of creating the selection the user already
perceives, whether the highlighted data points match the search properties. Thus an information
drill down process can be realized, meaning that the user iteratively applies filtering operations
by interactive manipulations of the visualization until only data objects of interest are selected.
Thereby selections that are already drawn on a subset of data items represent a refinement of the
previous filtering and thus are no complete reformulation of the constraints, that the data points
have to fulfil [11].

Finally the selected data items could be extracted as well as exported into a file, so that
a re-use of this subset for further analysis is possible. To comprehend how those data objects
were identified, all interaction steps have to be recorded and possibly even stored with the data
subset.

2.2 Statistical Methods for data exploration

The creation of statistics and the analysis of sets of data values, the so called samples, is a task
many scientists were working on for more than 300 years. With the introduction of the computer
the working field and thus the number of statistical algorithms has grown tremendously.
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For the scope of this work the statistical routines that could enhance the visual data ex-
ploration are of special interest. Therefore the statistical outlier detection is of high importance,
because the distinction between the intrinsic data and the outlying values is an initial task for
the data analysis. Afterwards a popular processing step is to characterize groups of data to get
a better overview and to determine which trends are dominant. Therefore clustering processes
provide a big variety of grouping heuristics. But often the dimensionality is too high for an
efficient clustering that can be analysed and interpreted. Therefore routines for the dimension
reduction are in use, to capture the main part of the information of the dataset in a lower dimen-
sional subspace. A slightly different procedure of determining an alternative data representation
with small number of attributes is the feature subset selection, where the most informative vari-
ables are chosen to make further processing steps more efficient.

Consequently this section gives an overview about the fields of statistical outlier detec-
tion, dimension reduction, subset selection and clustering.

2.2.1 Outlier Detection

Outliers are data items, that seem to be significantly different from the remainder of the data
based on a measure defined by the user [14]. This property indicates that those objects have
to be treated separately. Thus a detection of outliers is a crucial task in data exploration. In
contrast to the detection of clusters in the data, outliers are a group of data points that can
be heterogenic, which means that they do not show the same pattern in general, while cluster
members are similar to each other. Furthermore the number of outliers is usually rather small,
so that the search is concentrated on a minority of the data.

The visualization of one, two or three dimensional data allows an easy and fast identifi-
cation of outlying values by the human pattern recognition skills. The detection of multivariate
outliers with a dimensionality higher than 3 is no longer tractable by means of simple visu-
alization. A very popular way to detect high dimensional outliers that is in use in various
information visualization applications is to detect extreme values per attribute via robust statis-
tical measures [63]. An example showing that it is not valid to identify multivariate outliers by
features in lower dimensional subspaces is discussed in section 4.2.3.

Depending on the heuristic that is applied for outlier detection, different definitions of
outliers are proposed. This section gives an overview over the main categories of outlier identi-
fication and their most prominent algorithms.

Distribution based techniques

Statistical methods are often based on theoretic distributions. The most prominent high dimen-
sional distribution is the multivariate normal distribution. Its shape can be easily described by
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two parameters. The first parameter specifies the location of the distribution. Therefore usually
the mean vector of the given sample is used to identify the center of the dataset. To explain
the spread as well as the shape and orientation of the point cloud the covariance matrix is cal-
culated, which holds the variances of the individual attributes and the covariances describing
the linear relationship between the dimensions of the dataset. If these parameters of the multi-
variate normal distribution are given, the Mahalanobis distance [82] can be computed for each
data item, which considers the shape of the distribution and its location and thus indicates how
far a data item is displaced from the center of the dataset. Consequently this distance measures
the outlyingness of data points, if there is just one group of objects that shows approximately
multivariate normal distribution.

But to create reasonable results the center and the covariance matrix for a dataset has to
be estimated robustly. Therefore two prominent estimators have been developed: the Minimum
Volume Ellipsoid (MVE) [99] and the Minimum Covariance Determinant (MCD) [99]. MVE
considers those data items for the calculation of the mean vector and the covariance matrix,
which lie in the hyperellipsoid with minimum volume containing at least the half of the data
points. MCD uses the same approach but the criterion for the considered hyperellipsoid is that
the determinant of the covariance matrix based on the objects in the hyperellipsoid has to be
minimal. Because it is not feasible to investigate all possible subsets of a large datset to find the
optimal ellipsoids, the heuristics MINVOL [102] and FAST-MCD [101] for a fast calculation
of sufficiently good solutions have been introduced. The latter is outlined in section 3.2. The
Mahalanobis distance that is based on those robust estimates for location and spread is called
robust distance.

The disadvantage of this distribution based approach is that the dataset must be nearly
multivariate normal distributed. Otherwise the results of the robust distance are not reliable.
Thus datasets with different distributions have to be transformed, which can be cumbersome.
Also groups in the data can falsify the introduced outlyingness measure.

Distance based techniques

Distance based techniques rely on the calculation of the k nearest neighbours of a data item.
Thus an object can be considered as outlier, if the distance to its k nearest neighbour (Dk) is
larger than a user specified threshold d [74]. This definition introduces a simple and intuitive
heuristic to identify outlying data items. But the major drawback of this detection rule is that
the user has to specify a distance limit that depends on the number of used dimensions and
the range of values per dimension, what does not allow the reuse of a given value for different
datasets and different considered attributes. Furthermore a try and error approach is required to
figure out correct threshold values. Consequently the rule was adapted, so that those n objects
with the highest Dk values were considered as outliers [96]. The parameter n can be specified
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by calculating a percentage of the total number of data items in the dataset. An important
advantage of the Dk measure is that it introduces a ranking of outlyingness and also allows a
fuzzy decision boundary between outliers and ”normal” data items.

Because the calculation of Dk for all data points in a large dataset is cumbersome, a par-
titioning algorithm was introduced, which calculates the maximum values of Dk per introduced
data subset. If there are maximum values that are smaller than the highest n Dk values, that are
evaluated at that time, a pruning takes place, so that partitions with a small maximum Dk are no
longer examined [96].

Density based techniques

Density based algorithms in general apply a volume parameter and the so called MinPts para-
meter that steers the minimum number of points within a given volume. Together they define a
threshold that decides if objects or regions are merged to a new cluster. Data items that could
not be assigned to a cluster and thus are outside of dense regions are considered as outliers. A
cluster approach that is based on this concept is discussed in section 2.2.2.

An example that deals with this concept is the Local Outlier Factor (LOF) [21], which
uses the MinPts parameter to calculate a value for each data item indicating its outlyingness.
Data items located deep within clusters show an LOF of approximately 1, while high LOF val-
ues are assigned to isolated objects. Thus based on the density of neighbouring data points a
continuous measure allows a fuzzy outlier detection, which has the drawback, that the calcula-
tion of the LOF values for all data items in a large dataset is computationally expensive.

Other outlier detection techniques

Depth-based techniques try to compute the multivariate depth of data items, which indicates the
location of data points. Objects with the highest depth are considered to be near the center of
the dataset, while low depth values indicate that a data item is at the border of the data cloud
and thus a potential outlier. But the calculation of a measures like the half-space depth [113]
is computationally expensive for high dimensions. Thus only for 2 dimensional data efficient
depth-based algorithms exist [103], [65].

For sparse high dimensional data density based as well as distance based methods become
inefficient. The higher the number of dimensions the lower is the density of the given data items
and thus the difference between isolated data points and members of clusters becomes smaller.
The same applies to techniques based on a k nearest neighbours approach, because the more
dimensions are considered, the higher are the distance values, which means that the difference
of Dk values between possible outliers and ”normal” objects is represented in the last values of
floating point numbers. This phenomenon is called the curse of dimensionality. Therefore an
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evolutionary search technique for an efficient detection of lower dimensional projections that
allow an easy detection of outliers was introduced by Aggarwal et al [9].

2.2.2 Clustering

A clustering algorithm partitions a dataset into groups, the so called clusters. The data items
that belong to the same cluster are more similar to each other than to members of other clusters.
Thus a clustering introduces a simplification of the dataset, which outlines the main patterns in
the data.

A central decision, that has to be made for grouping the data, is the choice of a similarity
measure between two objects. Certainly this definition depends on the context, for which the
clustering is used. A common solution is to calculate distance measures like the Manhattan or
Euclidean distance, which describe the dissimilarity between data items.

In this section the most important categories of clustering algorithms and examples of
their representatives are mentioned. Because of the vast number of cluster procedures devel-
oped in the last 30 years it is far beyond the scope of this work, to refer to all outstanding
developments in this field. Therefore respective survey papers are recommended [16] [62].

Hierarchical Clustering

Hierarchical clustering algorithms create nested cluster structures by a merging or by a division
process. A merging procedure builds the clusters in a bottom-up manner by assigning each data
item to a cluster. In an iterative process the most similar clusters are merged to a new cluster
until the whole dataset is represented by one single cluster. A divisive approach creates this
group hierarchy in the inverse and thus top-down way.

To achieve the merging or the division of clusters, the algorithms commonly operate
on a n × n matrix holding dissimilarity values between each pair of the given n data items,
which is called the connectivity matrix. Furthermore besides measures that distinct between
objects also the differences between clusters have to be considered. Therefore the so called
linkage metrics have been introduced, which are heuristics to calculate the distance between
subsets. The most popular linkage metrics are single link [110], average link [118] and complete
link [73]. Single link calculates the distance between two sets A and B as the minimum distance
between a pair of objects x and y, where x ∈ A and y ∈ B. This heuristic suffers unwanted
chaining effects, meaning that elongated clusters may be created. In contrast to that complete
link methods consider the maximum distance between each pair of members of the subsets
of interest. Therefore the variety of possible cluster shapes is limited in comparison to single
link algorithms. A compromise between those two linkage metrics is the average link, which
considers the mean of distances between all pairs of x and y.
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The hierarchy created by a hierarchical clustering algorithm can be depicted in a den-
drogram, which is a tree like structure, where each node represents a cluster and each edge
represents a subset relationship between those groups. The root node stands for the whole
dataset, while the nodes of the level d, introduce a partition of the data into d clusters, if in
each iteration two clusters have been merged respectively if a splitting procedure created two
subclusters. The dendrogram representation allows an interactive choice of the granularity of
the partition, which is a significant advantage in comparison to partitional clusterings, where the
number of clusters has to be predefined by the user. A drawback of the hierarchical approach is
that hierarchies that have been created during the clustering are not changed anymore, so that
no further optimization takes place.

Popular hierarchical cluster algorithms are BIRCH [123] and CURE [45]. CURE repre-
sents clusters by well scattered data items, which allows also the detection of clusters showing
non-spherical shapes and reduces the influence of outliers. Sampling techniques make the effi-
cient processing of large datasets possible. In comparison to that BIRCH is designed to work
with high numbers of data items. The similarities of the objects are stored in a height-balanced
tree, which can be incrementally updated. Consequently the first scan of the data items already
provides a good clustering solution, which can be even improved by further iterations.

Partitional Clustering

Partitional clustering algorithms introduce groups of the data that are iteratively optimized with
respect to an objective function measuring the quality of a cluster result. Usually an initial
solution is created that is improved by reassigning data items to different clusters until a local
optimum of the energy function is reached. The main drawback of those cluster approaches
is that the computed local optimum can be far away from the best solution and the quality of
the cluster result strongly depends on the initial solution, for which only heuristics exist, which
do not guarantee a worst case boundary for the quality of the final partitions. Nevertheless
partitional clusterings are very popular because of their simplicity and their intuitive and easy
to interpret solutions.

The algorithm that is probably the most used clustering approach is k means cluster-
ing [50] [51]. It divides the dataset into a user defined number of partitions, which is represented
by the variable k. The data items are assigned to the cluster with the nearest cluster center. Af-
terwards the centers, also called centroids in this case, are updated by calculating the mean
vector of all members of a cluster. These operations are performed iteratively until no cluster
center changes its position significantly. This procedure detects in general spherical shaped
groups in the data. An elaborate description of the algorithm can be found in section 3.3.1.

The main drawbacks of this approach are. that outlying objects have strong influence
on the solution, that only numerical data can be clustered and that the user has to specify the
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optimal parameter k, which in general can only be achieved by several runs of the algorithm.
But because of its popularity a huge number of publications propose adaptations of the k means
clustering to overcome its disadvantages. To create better initial solutions that influence the
quality of the final result, several k means procedures are applied on subsets of the data and the
centers of the best solution are used as starting point for the clustering on the whole dataset [20].
An extension for categorical data was introduced by Huang [56]. To reduce the computational
costs of the k means clustering, geometrical acceleration techniques were developed [89]. The
adapted algorithm x means [88] proposes besides an acceleration approach also an estimate
of the parameter k. Additionally to allow hyperelliptic shaped clusters an approach using the
Mahalanobis distance as distance measure was tested [81].

Furthermore the fuzzy k means clustering [17] was introduced, which avoids that data
items are assigned to only one cluster, although they are located at the border of it. Thus
fuzzy clustering computes a membership value indicating the reliability of a cluster assignment.
While data items near a cluster center have high membership values for the corresponding
cluster, objects on cluster boundaries may be associated with several clusters. The algorithm is
discussed in further detail in section 3.3.2.

Besides the k means approach the k medoids clustering has gained high popularity. In
contrast to k means the cluster representatives (medoids) are chosen so that they are located in
the densest area of the cluster, which reduces the influence of outliers. Popular algorithms are
Partitioning Around Medoids (PAM) [69] and Clustering LARge Applications (CLARA) [69].

An also important category of partitional clustering procedures are expectation maxi-
mization (EM) [32] approaches, that assume that data items are samples independently drawn
from a mixture model, consisting of several (unimodal) distributions. Thus those algorithms are
also called probabilistic clustering. An EM approach makes an initial guess of the probability
functions of the distributions and iteratively improves this solution. The result can be easily
interpreted as the distributions of the mixture model are explained by the computed parameters.

Density-based Clustering

Density-based cluster algorithms are able to detect clusters of arbitrary shapes. In general the
user has to specify volume and/or ”number of objects” parameters that implicitly compute a den-
sity threshold, deciding which regions are connected to clusters. The major drawbacks of those
approaches are the interpretation of the created cluster structures and the setting of a reasonable
density threshold. The concept of a density-based clustering is shortly described on the basis of
the algorithm Density Based Spatial Clustering of Applications with Noise (DBSCAN) [37].

DBSCAN needs two parameters that influence the shape as well as the number of created
clusters. The first parameter ε defines those objects as neighbours of a given data item, which
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have a distance smaller than ε. The second parameter MinPts is used to define core objects,
which are data items that have more neighbours as MinPts. As starting point each core object
represents a cluster. In the first iteration the neighbours of the core objects are added to their
clusters. Afterwards all neighbours of the cluster members are added, which allows a growing
process according to the data density. Data items that are not added to a cluster are considered
as outliers.

Other Clustering Approaches

Besides these main categories a huge variety of other methodologies like graph-theoretic or
grid-based clusterings as well as search-based or evolutionary approaches for the detection of
groups in data have been developed. Applications in combination with dimension reduction
techniques were proposed for the clustering of very high dimensional data. Also the influence
of outlying objects on the group finding process gave rise to fuse clustering techniques with
outlier detection approaches [16] [62].

2.2.3 Dimension Reduction Techniques

The concept of dimension reduction is a well known technique used in the fields of pattern
recognition, compression or analysis of functional dependencies. In information visualization
the projection of multidimensional data points into a two or three dimensional space is a typical
task, which allows the intuitive representation of data items in scatterplots.

But also other statistical procedures like clustering can benefit of a dimension reduc-
tion, because the most important information of the multivariate dataset is gathered in a low
dimensional subspace. This allows a faster execution of clustering algorithms and forces those
routines to focus on the main information, meaning that high frequent noise in the data is al-
ready extracted. Furthermore correlations between dimensions are summarized, what avoids
the domination of the clustering by a group of dimensions showing the same pattern.

This section gives a short overview of the most prominent dimension reduction tech-
niques. An extensive survey on this field is given by Carreira-Perpinan [23].

Principal Component Analysis (PCA)

The most prominent and widespread dimension reduction technique is the Principal Component
Analysis (PCA) [61] [66]. The PCA finds uncorrelated directions describing the maximum vari-
ance contained in the data. Those directions are called the principal components and are linear
combinations of the data dimensions. The first principal component represents the direction
in which a given data cloud has the highest elongation and thus the highest variance. The i-th
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principal component is perpendicular to their i − 1 predecessors and describes equal or less
variance than the (i− 1)-th principal component. Thus the rejection of the last principal compo-
nents which mainly capture high frequent noise in the data, introduces a reasonable dimension
reduction. A mathematical discussion of the PCA is given in section 3.4.

Its popularity is based on the simple concept, the good results in practical applications
and its efficiency, because the PCA can be calculated in polynomial time. But the simple model
used for the calculation of the principal components has the drawback that only linear subspaces
of the data can be created. Also the number of principal components that should be used to keep
the majority of the information of the data is not obvious. But heuristics for finding the cut off
point at the principal component, where the highest relative difference in the explained variance
values takes place, help to overcome this drawback.

Projection Pursuit

The projection pursuit [57] [67] has in contrast to the PCA the objective to search for ”interest-
ing” projections of the data points. The aim is to employ the user’s excellent pattern recognition
skills to find structures in visualizations of the data items. Therefore projection pursuit proce-
dures try to find one, two or three dimensional projections of the data that show patterns like
clusters, gaps or outliers significantly. To achieve this, an unsupervised search procedure is
started optimizing a given objective function, the so called projection index, which measures
the quality of a linear orthogonal projection of the data. Because the distribution of the projected
data should contain anomalies, a projection is of high interest, if it deviates from a normal distri-
bution. The reason for this type of measure is that a normal distribution can be easily described
by the mean vector and the covariance matrix and that low dimensional projections of high
dimensional data items usually create normal distributed patterns.

The projection pursuit suffers the same problem as the PCA because only linear pro-
jections can be created. Furthermore the search for projections of interest is computationally
expensive, because a multitude of directions has to be checked. Thus a sampling of directions
has to be introduced as well as search heuristics that improve solutions which are stuck in local
optima.

In contrast to the automatic detection of interesting projections the grand tour [13] [22]
creates an animation of mappings. Therefore the p dimensional data is rotated and usually
mapped in a two dimensional visualization area. The task of identifying projections of interest
is handed over to the user, but the drawback is, that an exhaustive search of all possible mappings
of a multivariate dataset may not have a time limit.
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Kohonen’s Self-Organizing Map (SOM)

A very popular method for dimension reduction which is also used in information visualization
applications is Kohonen’s Self-Organizing Map (SOM) [76]. SOMs try to capture the structure
of a p dimensional dataset by applying an unsupervised learning scheme, which initiates a set of
p dimensional reference vectors, which are associated with units of a two dimensional lattice,
at random positions in data space. Afterwards for each data item the nearest reference vector is
attracted to the position of the data point. The reference vectors of neighbouring units are also
influenced, so that linked units in the two dimensional lattice represent similar positions in data
space. By an iterative execution of these update calculations the reference vectors improve their
fit of the main agglomerations of data points in data space.

The main advantage of this dimension reduction technique is that it combines a topology
preserving mapping of multivariate data on a plane with a clustering procedure. This is also
expressed by visualization techniques for SOMs discussed in section 2.3.1. Furthermore the
reference vectors represent the distribution of the data. But in contrast to clustering procedures
like the k means clustering the SOM procedure is not guaranteed to converge. It is also not
possible to define an objective function that could be optimized.

Based on the SOM algorithm many new approaches for topology preserving mappings of
high dimensional data on a two dimensional lattice were made. Examples for these are the in-
cremental grid growing [19], the growing hierarchical self-organizing map [33] or the growing
cell structures [40]. An alternative to the SOM procedures is the Generative Topographic Map-
ping (GTM) [18], which also creates topologically continuous maps. GTMs are based on solid
statistical theories, but they are not suitable for drastic dimension reductions, where hundreds
and thousands of dimensions should be handled.

Multi Dimensional Scaling (MDS)

Multi Dimensional Scaling (MDS) [77] tries to find a function, that maps the p dimensional data
items to a lower dimensional space in a way that the relation between the data points is kept as
accurate as possible. This means that data items that have similar values in the data space should
be mapped closely to each other. To find the optimum mapping function a search procedure in
the space of functions of interest is started. The objective function that is minimized considers
the difference of distances between the mapped data items and their actual dissimilarity in the
dataset.

This procedure allows creating any reasonable linear or non linear mapping of the data.
But one drawback of MDS is that, if the data has clusters, the mapped data items may show
large differences between the clusters but the spread within the groups may not be represented
in the correct magnitude. Thus this approach often pronounces the global structure of the data,
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but local properties may be neglected. A further challenge by using MDS is the selection of
the correct dimensionality of the mapping. It is recommended to try several settings [23]. In
contrast to the PCA it is also not possible to reduce the dimensionality of an MDS mapping by
omitting one of the coordinates of the created subspace.

Efficient algorithms for MDS apply spring models that iteratively adapt the lower dimen-
sional representatives of the data items to their distance relation in the data space [84] [24].

2.2.4 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) [59] is a recent development which creates linear com-
binations of the original attributes, so that these artificial variables - the so called independent
components - are maximally statistically independent from each other. With the FastICA [86]
an efficient algorithm for the calculation of the independent components is provided.

ICA can be used to detect interesting projections of the data, showing significant struc-
tures. Similarly to the projection pursuit it is assumed that interesting mappings do not show
a normal distribution. Thus ICA can be applied to detect all independent components, which
are nongaussian projections of the data. Components that show normal distribution can be
seen as the noise in the data. This concept allows the reduction of the dimensionality and the
compression of the major information in the dataset by a set of artificial attributes. The main
disadvantage of this technique is that the number of ”uninteresting” projections can not be de-
termined in advance and thus the possible reduction of the attributes can not be influenced by
the user. Furthermore in contrast to the PCA neither a hint concerning the quality of the di-
mension reduction is given nor can a statement about the importance of one of the computed
artificial attributes be made.

2.2.5 Feature Subset Selection

In contrast to dimension reduction techniques, where new variables are created that can be
used for visualization or clustering, the feature subset selection chooses the most important
attributes for a user defined purpose. This has the advantage that the variables defining the
lower dimensional representation of the data items can be easily interpreted.

In the context of unsupervised learning feature subset selection is a powerful tool that
is primarily applied to clustering. But also for information visualization this technique gained
more and more focus along with the increasing number of dimensions that has to be displayed
within one view.

In general the importance of a variable is ranked with respect to a criterion. Often used
measures for these rankings are saliency, entropy, density or reliability. A dimension is consid-
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ered as salient, if it covers a high variance or a large range of data values. The entropy criterion
has maximum values for uniformly distributed attributes, while the density measures how many
variables are correlated with the current dimension of interest. In contrast to that a feature is
called reliable, if it is measured in high quality and thus the errors are small compared to the
range of the data values [47] [85].

2.3 Combination of Statistical Methods and Information Vi-
sualization

An increasing number of information visualization applications provide techniques for clus-
tering and dimension reduction, but they differ in the way how these statistical routines are
incorporated in the visualizations. The simplest approach is certainly to integrate the results of
procedures like clustering in standard views as parallel coordinates or scatterplots. This allows
the user to present and explore the outcome of the statistical routines, but it is not possible to
interact with those algorithms. Thus if the user discovers possible mistakes in the result of a
statistical technique, it has to be started again with different settings, which yields to a new
solution that is not based on the previous outcome and may show completely different issues.
Consequently this section categorizes proposals for combining information visualization with
statistics in two classes, describing the graphical representation of results of statistical routines
and their exploration on the one hand, and the integration of statistical functionality in an inter-
active visual data mining process on the other hand.

2.3.1 Visualizing results of statistical procedures

The majority of visualizations that are applied to explore statistical results concentrate on clus-
terings and dimension reductions. Although there are applications that also discuss the iden-
tification of outliers, no publications were found, that solely focus on the visual analysis of a
statistical outlier detection routine.

Visualizing clustering results

The outcome of a clustering procedure can be easily incorporated into standard visualization
techniques. The representations of the data items can be coloured according to their cluster
memberships. Additionally - depending on which clustering technique was used - the represen-
tatives of a cluster (mostly the cluster centers) could be accentuated.

Furthermore approaches exist to use the statistical properties of the computed groups in
the data to separate them accordingly in the visualization. To achieve this, the inverse of the
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Figure 2.1: An example, for which the PCA would project the data items on a direction parallel
to the x axis, while the LDA approach would choose a direction parallel to the y axis (image
courtesy by Dy et al [36]).

population weighted average covariance matrix of all clusters and the covariance matrix based
on the cluster centers are applied. The first matrix is used to eliminate distortions introduced
by the cluster shapes. The second matrix spreads the data items so that the cluster centers
become more distinct. Thus the data items projected on the first two principal components
of this matrix product show the maximum possible separation of clusters created by a linear
combination of original data attributes. Consequently this projection represents the best two
dimensional visualization of high dimensional clusters [36]. The statistical fundamentals for
this approach are introduced by the field of Linear Discriminant Analysis (LDA) [42]. The
advantage of this concept is demonstrated by an example shown in figure 2.1, where the LDA
approach would project the two groups on a direction parallel to the y axis, which results in
a separation of the groups in the projection. The PCA is not able to achieve this result. A
drawback of this approach is that outlying cluster centers have tremendous influence on the
results and may create distortions that can lead to wrong conclusions.

An application that incorporates a variety of cluster algorithms and a visual exploration
tool for the cluster results is gCluto [97]. It provides agglomerative, partitional, graph parti-
tional and bootstrap clustering procedures. For those routines an interface is implemented that
allows the power user to steer the common parameters of the clustering as well as provides
the non-experienced user to create useful partitions by standard settings. For the exploration
of the introduced groups of data items two visualization techniques are realized. The so called
matrix visualization shown in figure 2.2 (a) illustrates the data as a table, where the data values
themselves are replaced by colours. High positive values are usually mapped to red, negative
entries are painted green, while items near 0 are represented by white cells. Cluster borders are
indicated by black lines that separate the rows of the matrix visualization, which correspond
to the data items. A dendrogram structure that is plotted on the left side of the matrix allows
investigating the cluster structure in the data. Data items belonging to one cluster can be sum-
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Figure 2.2: Screenshots from gCluto showing the matrix visualization (a) and the height field
view (b) (images courtesy by Rasmussen et al [97]).

marized by collapsing the cluster. Afterwards the cells in the matrix representing the cluster
are coloured according to the mean values of its objects. The same approach is applied for
the columns, which represent the attributes of the dataset. Additionally zooming and selection
techniques can be applied. A details-on-demand approach shows the values of cells and their
cluster assignment.

The second visual exploration tool is a height field visualization (figure 2.2 (b)), for
which an MDS is applied to project the data items into a two dimensional space. Afterwards
height values that correspond to the similarity of the data items within a region are calculated for
each position in the plane. For the visualization a free formed surface is created that represents
clusters as mountains and their boundaries as valleys. Their position to each other indicates
the similarity between the clusters. Additionally a colour mapping according to the standard
deviation of the data items per cluster is applied. The cluster centers are accentuated by labels
that are connected to their position on the surface by lines. As interaction technique the user
can navigate through the three dimensional visualization.

While gCluto developed its visualizations for a set of different cluster procedures, appli-
cations like H-Blobs [111] focus on the properties of a certain category of clusterings. H-Blobs
introduces a visualization that is designed for an adapted hierarchical clustering approach. The
clusters are illustrated in three dimensional scatterplots by surfaces that are created by placing
blob primitives at the cluster centers. Those primitives introduce ellipsoidal gaussian fields, on
which an isosurface generation is based. Because of applying a hierarchical approach also a
level-of-detail adaptation is possible. Thus if a lower hierarchy containing a higher number of
partitions is chosen, also the precision of the data visualization is increased.

The same level-of-detail procedure is used for the hierarchical parallel coordinates [41].
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In this application the use of hierarchical clustering to enhance the parallel coordinates visu-
alization concept is introduced. After the clustering process a level in the dendrogram and
consequently a number of clusters is chosen and visualised with the parallel coordinates. But
a cluster is no longer represented by the polyline illustrations of its data items but by variable-
width opacity bands. The width of the bands is defined on each axis by the minimum and
maximum attribute values of the cluster objects. Between the axes the width is linearly inter-
polated. The maximum opacity of a band depends on the size of the cluster. While the borders
of the band are transparent, the center has the maximum opacity value. For the area between
linear interpolation for this property is performed.

Besides the main applications introducing modifications of cluster routines and visual-
izations to allow a combination of those techniques also the effective exploration of clustering
results with common information visualization functionality is discussed. The strengths of par-
allel coordinates and its interaction techniques for the analysis of partitioned data is treated by
Wegman et al [119]. Furthermore the use of the grand tour focussing on the generation of in-
tuitive plots of projections of the data is outlined. Kandogan [68] outlined the usefulness of
star coordinates for the investigation of multivariate features like trends as well as outliers. An
overview concerning the interactive use of dendrogram structures with focus on the exploration
of genomic microarray data is given by Seo et al [106].

Feature Subset Selections and Visualization

In this section three examples of feature subset selection applications which incorporate visu-
alization techniques are discussed. These tools do not consider a supervised learning approach,
where it is possible to verify the quality of a chosen set of attributes with respect to an error
measure.

Dy et al [36] introduced the so called Visual Feature Subset Selection using EM Cluster-
ing (Visual-FSSEM). For this application EM clustering is used to find groups using a specified
subset of attributes in which the p dimensional data items are defined. To avoid the examination
of all 2p possible dimension subsets, a greedy heuristic is applied so that iteratively that attribute
is eliminated that introduces the smallest deterioration of the clustering result with respect to a
user defined objective. The provided quality criteria for this incremental subset creation are the
scatter separability or the maximum likelihood [35]. On each of the introduced feature subsets
an EM clustering is applied. The result is visualized in scatterplots using the LDA projection
approach outlined in 2.3.1. The user chooses depending on the visual presentation of the results
the optimum feature subset.

With respect to visualization of very high dimensional data the Dimension Ordering,
Spacing and Filtering Approach (DOSFA) [120] was proposed, which combines interactive
multivariate visualization techniques with heuristics to determine the importance of attributes.
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Based on the thesis that variables showing similar patterns should be visualized closely to each
other (e.g. as neighbouring axis in parallel coordinates) [12], a dimension ordering is introduced
with the aim to minimize the dissimilarities between adjacent dimensions in visualizations like
the star glyph or the parallel coordinates. Therefore a hierarchical clustering is performed on the
dimensions via the Visual Hierarchical Dimension Reduction (VHDR) [121] system, which is
discussed in section 2.3.2. The clustering result is visualized by the InterRing [122] technique,
a radial tree visualization tool, that allows the interactive exploration of the cluster hierarchy.
Afterwards the attribute order is established by sorting the clusters of each hierarchy level ac-
cording to a similarity criterion or according to their variance of data values. To compare the
clusters representatives are calculated by averaging the dimensions within the groups. The user
has the possibility to re-order the attributes or clusters of variables via the InterRing interface.
Additionally to the ordering a spacing between the dimensions is established, placing similar
attributes closely to each other in the multidimensional views to meet the requirements of the
Gestalt Law on proximity [75]. The user can influence the spaces between depicted dimensions
by zooming and panning operations as well as by distortion techniques that emphasize selected
dimensions, while the context is kept. This facilitates the recognition of dimension groups and
the perception of patterns in very high dimensional data. A feature subset selection can be ap-
plied by using a so called dimension filtering heuristic. This approach chooses an attribute of
a possible set of very similar variables. Dimensions that are of low interest for the user can
be neglected for the visualization. The InterRing interface therefore allows the selection of
dimensions or groups of attributes for visualization.

A different approach to identify attributes of special interest for the user is introduced
by the Rank-by-Feature Framework [107]. In this application one and two dimensional axis
parallel projections are ranked by the importance of the structure that they contain. For one di-
mensional projections measures can be selected that test the attribute for uniform or normal dis-
tribution as well as for the number of possible outliers or unique values. Depending on the needs
of the users one of theses ranking criteria can be chosen which leads to an ordering of the vari-
ables according to their importance. The validity of this ranking can be examined by inspecting
histogram and boxplot visualizations of the projections. For the two dimensional mappings the
functional relationship between the illustrated dimensions can be examined by correlation co-
efficients or by the least squares errors of a linear respectively a curvilinear regression. If the
projections should be ranked according to two dimensional distribution patterns, then the num-
ber of data items in a user defined region or a test for uniformity can be evaluated. Afterwards
the introduced ranking can be visually examined by a scatterplot view, showing a user selected
two dimensional projection. The application eases the analysis of interesting dimensions and
two dimensional structures, because especially for high dimensional datasets a pre-selection of
attribute pairs with respect to an importance criterion is crucial to avoid the investigation of all
possible projections. Visualization serves as mean of validation and exploration, which on the
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one hand allows the verification, if the chosen importance measures achieves correct results,
and on the other hand makes the immediate investigation of the found structures possible.

Visualization of dimension reduction techniques

As dimension reduction techniques like PCA and MCD introduce a mapping of the data into a
lower subspace, all visualization techniques for multivariate data can be applied to illustrate the
projected data items. This does not apply to the results of SOMs, because they represent the
multivariate datasets by reference vectors, which are linked to positions in a two dimensional
grid. For the visualization of this grid a huge variety of contributions has been made in the field
of machine learning. This section summarizes the most important publications.

One of the most cited visualization techniques for a SOM is the U-Matrix [114], where
the sum of distances of each reference vector in data space to those of neighbouring units is
calculated. This measure is used for colour mapping, so that each unit represents an array of
pixels with the same appearance in a two dimensional visualization. Because of the presentation
of the data in a map the metaphor of a landscape is stressed, where clusters are represented as
valleys, cluster boundaries can be identified as mountains and outliers are indicated by funnels.
A similar approach is used by the P-Matrix [115], for which a density estimate is performed at
the position of each reference vector so that the colours for the units can be mapped according to
the density in data space. This leads to the representation of clusters by plateaus, while ditches
identify their borders. A combination of the distance-based U-Matrix and the density-based
P-Matrix was introduced by the U*-Matrix [116] that aims to depict clusters by coherent colour
regions and to accentuate cluster boundaries.

Other approaches like the hit histogram [94] map the number of data items that are as-
sociated with a reference vector on a symbol that is bright if nearly no object is near the vector
and fully coloured otherwise. Thus light areas indicate sparsely populated regions in data space,
while dark areas identify high density. Smoothed data histograms [87] introduced a parameter
to reduce the noise of visualizations created by hit-histograms. This parameter can be used to
steer the level-of-detail, meaning that it also decides how accurate the visualization shows the
actual data structures. Contour plots can even simplify those representations and exaggerate
dense regions.

For the colouring of the SOM units also clusterings on reference vectors are common [117].
The most popular approaches use k means or hierarchical cluster algorithms. The same colour
is assigned to the units of a cluster. The main drawback of this approach is that the number of
groups in the data has to be specified by the user. Based on the clustering result also a flow field
representation of the map was proposed, where for each unit an arrow showing to the nearest
cluster center is drawn [93].
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2.3.2 Interactive collaboration between Information Visualization and Sta-
tistical Procedures

A tight collaboration between statistical routines and interactive visualization techniques is
rarely achieved. In this section three examples that accomplish this degree of integration are
discussed.

Visual Hierarchical Dimension Reduction (VHDR) [121] applies a hierarchical clustering
on the dimensions of a dataset. The introduced nested attribute group structure is afterwards
visualized by InterRing [122]. This circular, space-filling visualization technique illustrates the
root of the tree structure by an inner ring, which is surrounded by ring segments that illustrate
the nodes and thus the dimension groups of the clustering result. Segments representing child
nodes of the same cluster are similarly coloured. Distortion techniques, as well as rotations,
zoom and panning operations allow the exploration of the dimension relationships. Selection
techniques can be used to highlight variable groups of interest. Also the manipulation of the
dendrogram hierarchy is possible. After the exploration and the modification of the clustering
result a representative dimension per cluster or the center of all dimensions in a group is chosen.
These attributes are applied for visualizations of the data items and further operations in the
data mining process. Consequently this approach introduces a subset selection procedure, that
is based on a statistical routine and incorporates the user’s knowledge and experience, which is
communicated via an information visualization interface.

The coordination of computational and visual techniques for feature selections and clus-
terings is also discussed by Guo [46]. In the introduced application the feature subsets are
evaluated according their ”goodness for clustering”, meaning that only those combinations of
dimensions, that show significant cluster structures in their spanned subspace, are of interest.
As quality measure the so called Maximum Conditional Entropy (MCE) is calculated for each
pair of variables. An ordering of the attributes, so that similar dimensions are positioned next
to each other, is accomplished by a hierarchical clustering. The MCE values of the ordered
dimensions are afterwards illustrated in a colour coded matrix, so that blocks of bright colours
indicate subspaces that contain strong group structures of data objects, which is shown in fig-
ure 2.3 (a). The user can interactively select the attributes of interest in the matrix visualization
or apply a heuristic that determines these data subspaces based on the MCE information. After-
wards a clustering procedure that allows the detection of groups with arbitrary shapes is applied
on the dimension subset. To achieve this, a hierarchical clustering procedure was enhanced by
concepts from density and graph based techniques. The additionally introduced parameters can
be steered via interactive visualizations. Firstly the clustering divides the detected subspace
into hyper-cells, for which the numbers of data items that lie in them are considered as density
measure. The user can set a cut-off value that excludes cells with lower density values from
the actual clustering to speed up the group finding process. For the interactive tuning of this
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Figure 2.3: Interactive visualizations for the integration of user interaction in feature subset
selection and clustering tasks: the matrix visualization for the MCE values (a), the graph show-
ing the density of cells and a cut-off limit (b) and an illustration of a possible cluster structure,
which is summarized by an interactive visualization steering the number of clusters (c). (Images
courtesy by Guo [46])

parameter a graph showing the decreasingly ordered density measures is used. The cut-off limit
is drawn as a horizontal line that also specifies the number of considered cells by the x position
of its crossing point with the graph (figure 2.3 (b)). Afterwards the hierarchical clustering is
applied on the selected cells. Thereby the cells are also ordered by a minimum spanning tree
approach. A plot showing each cell versus the distances to its two neighbouring cells shows
valleys as clusters and ridges as cluster boundaries. The user can steer the number of cell
groups by introducing a limit for the distances. Distances that exceed this limit introduce a new
cluster boundary (figure2.3 (c)). Consequently this parameter can be used for manipulating
the level-of-details, because the lower the distance limit is set, the higher is the number of de-
tected clusters and the more precise is their fit to the data structures. All these visualizations for
parameter tuning are linked with a parallel coordinate plot that illustrates the detected clusters.

Based on the clustering procedure OptiGrid [54], which is designed to detect groups in
very high dimensional datasets, the HD-Eye approach [55] integrates innovative visualization
methods into the clustering procedure to achieve better results. OptiGrid uses a density function
that identifies agglomerations of data items and applies splitting procedures, where the data
space is divided into half spaces by separators, which can be geometric objects like hyper planes.
Therefore only separators are chosen that pass through low density regions. The introduced
subspaces are processed iteratively until no further subdivision can be applied. The HD-Eye
approach integrates the human pattern recognition skills to define data projections, that allow the
visual detection of gaps in the data, and finally the user can define separators for the partitioning
process. For the quality appraisal of a projection iconic visualizations are created that indicate,
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Figure 2.4: Visualizations as user guidance for the HD-Eye approach: Iconic visualizations
(a) showing good separation properties of projections by large spikes, while the color indi-
cates the number of data items that can be well divided into subcells. Colour-density (b) and
curve-density plots (c) indicate for the projections where separators can be introduced. (Images
courtesy by Hinneburg et al [55])

whether the mapped data items can be separated in groups (figure 2.4 (a)). If the user chooses
a projection of interest, colour-density (figure 2.4 (b)) and curve density plots (figure 2.4 (c))
that stress the agglomerations of objects by colour mappings respectively by histogram like
visualizations are used to define separators that divide the examined space into subspaces, which
represent new cells for the OptiGrid cluster algorithm. Consequently the pattern recognition
skills of the user are applied to create the best possible subdivisions while algorithms provide
pre-selected projections and decide, whether further splitting operations are possible.



Chapter 3

Statistical Fundamentals

This section discusses the statistical basics that are of high importance for this work. Therefore
instructions for the calculations and formulas that are necessary for understanding the usage
and the implementation of the routines integrated in the statistical library are presented. The
explanation of these fundamentals is divided into the six topics statistical moments, correlation
and covariance, clustering, principal component analysis (PCA), linear regression and finally
theoretic distributions and statistical tests. The reason why these functionalities are chosen as
well as their usefulness for information visualization applications are outlined in section 5.

3.1 Statistical Moments

Statistical moments [82] are estimates of parameters concerning the location, the scatter or
the shape of the distribution a given set of values, the so called sample, comes from. For the
calculation of the center of N data values xi the estimators arithmetic mean, median and α -
trimmed mean exist. For the median as well as for the α - trimmed mean the sorted values are
needed. Thus x(i) represents the i-th smallest element in the given formulas of table 3.1.

Arithmetic mean x̄ = 1
N

∑N
i=1 xi

Median median(x1, . . . , xN) = x̃ =


x(b N

2 c+1) if N is uneven.

(x(b N
2 c)
+ x(b N

2 c+1))/2 if N is even.

α - trimmed mean m(α) = 1
N−bN∗αc (x(bN∗αc+1) + · · · + x(N−bN∗αc))

Table 3.1: The moments describing the location of a given sample.
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For the estimation of the magnitude of the spread of the values around the center the most
popular moments are the variance, the standard deviation or the mean of absolute deviations.
But also the robust measures median of absolute deviations (MAD) and α - trimmed standard
deviation should be considered, because they are resistant against the influence of extreme val-
ues. To compare the MAD and α - trimmed standard deviation with the standard deviation,
their values have to be scaled. The MAD is multiplied with 1

0.675 and the α - trimmed standard
deviation with a constant that depends on α. (Those coefficients are evaluated by mapping the
MAD respectively the α - trimmed standard deviation on the value of the standard deviation for
a standard normal distributed set of values.) The formulas of these moments are summarized in
table 3.2.

Variance σ2 = 1
N−1

∑N
i=1

(
xi − x̄

)2
Standard deviation σ =

√
σ2

Mean of absolute deviations 1
N

∑N
i=1 |xi − x̄|

Median of absolute deviations (MAD) median1≤i≤N (|xi − median1≤ j≤N (x j)|)

α - trimmed standard deviation s(α) =
√

1
N−bN∗αc−1

∑N−bN∗αc
i=bN∗αc+1(x(i) − m(α))2

Table 3.2: The moments describing the spread of a given sample.

Higher order moments like the skewness and the kurtosis, that are shown in table 3.3,
give hints concerning the shape of the distribution the data values come from. A negative skew-
ness value indicates that the majority of the data values are smaller than their center, while the
kurtosis informs about the deviation of the distribution of the data from the shape of the normal
distribution. A kurtosis value of 0 means that, the data values are normally distributed. Nega-
tive values for the kurtosis indicate that there are less data items in the tails of the distribution
compared to normal distribution. A positive kurtosis is a hint for the inverse case.

Skewness
(

1
N

∑N
i=1

(
xi − x̄

)3)
/σ3

Kurtosis
(

1
N

∑N
i=1

(
xi − x̄

)4)
/σ4 − 3

Table 3.3: The moments of higher order.
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The α - percentiles [58], that are also called α - quantiles, are measures indicating the
maximum value of the lowest N ∗α data values and thus communicate robust information about
the shape of the data distribution. A computation scheme for the α - quantile qα is given in
table 3.4.

α - quantile qα =


x(N∗α)+x(N∗α+1)

2 if N ∗ α is whole-numbered.

x(bN∗αc+1) else.

Table 3.4: α - quantiles calculation scheme.

3.2 Correlation and Covariance

The correlation [28] is a normalized measure in the intervall (−1, 1) indicating linear dependen-
cies between two samples with N values xi and yi. Three different methods for calculating a
correlation coefficient are commonly in use, which are shown in table 3.5. The Pearson corre-
lation r divides the covariance of the two samples by their standard deviations.

Pearson correlation r =
∑N

i=1

(
xi−x̄
)(

yi−ȳ
)

√∑N
i=1

(
xi−x̄
)2√∑N

i=1

(
yi−ȳ
)2

Spearman correlation rs =

∑N
i=1

(
Ri−R̄
)(

S i−S̄
)

√∑N
i=1

(
Ri−R̄
)2√∑N

i=1

(
S i−S̄
)2

Kendall correlation τ = conc.−disc.√
conc.+disc.+extra-y

√
conc.+disc.+extra-x

Table 3.5: Correlation measures

The Spearman correlation rs has the same calculation scheme but instead of the data
values themselves their ranks are used. The rank of a value is its position in the ascending
sorted sample. Ri indicates the rank of the i-th value of the values xi and S i indicates the rank
of the values yi.

The Kendall correlation examines all 1
2 N(N − 1) pairs of data points (xi, yi). Thereby it

is decided whether a pair is concordant (conc.) or discordant (disc). A pair is concordant, if
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its x and y values have the same order relation (higher or lower) to each other. A pair is called
discordant, if the x values have the opposite order relation as the y values. If the x values or the
y values are equal an extra-x-pair respectively an extra-y-pair is counted. The counts of those
four categories are used to calculate the Kendall correlation.

Because of the calculation schemes of the Spearman and Kendall correlation, they are
also able to detect monotonic functional coherences like logarithmic or exponential dependen-
cies. If only linear relationships should be examined in a robust way, a robust estimation of the
covariance matrix can be applied, from which the correlation can be computed.

The covariance also describes the linear relationships between samples and is defined as

Covariance : σ2
xy =

1
N − 1

N∑
i=1

(
xi − x̄

)(
yi − ȳ

)
.

Thus the matrix holds the variances of the samples in the main diagonal and the covari-
ances between the samples in the off diagonal entries. Consequently it is a symmetric matrix.

A robust estimation of the covariance matrix can be achieved by considering a reason-
able subset for the covariance calculation that represents the majority of data items of the sam-
ple. One way to find this subset is the minimization of the determinant of the covariance ma-
trix [100]. A proof for this theorem is shown in [101]. Certainly a complete search of possible
subsets is not feasible especially for large datasets. Therefore the FAST-MCD [101] algorithm
was introduced as a heuristic that approximates the best subset.

For a dataset containing N objects the procedure starts with the selection of h ∈ ( N+p+1
2 ,N)

arbitrary p dimensional data items, which are considered to calculate the initial mean vector µ1

and the initial covariance matrix Σ1, which serve as location and spread estimates for the data.
Those two estimates are used to calculate the Mahalanobis distance for all N data items.

MahalanobisDist(x) = (x − µ1)TΣ−1
1 (x − µ1)

The next subset is formed of those data points having the h smallest Mahalanobis dis-
tances. This iterative process is carried on until the determinant of the covariance matrix of two
consecutive subsets is equal.

Because this approximation scheme evaluates locally optimal solutions a multi start local
search approach is applied on a small fraction of the data. Afterwards the best results are used
on the whole dataset. Therefore parameters are introduced steering how many initial subsets
are used and how long they are iterated. Furthermore the user can decide how many solutions
should be considered for the whole dataset.

The subset creating the covariance matrix with the smallest determinant is applied to
calculate the robust center of the data µrobust and the robust covariance matrix Σrobust, describing
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the shape of the data cloud. On these robust estimates the calculation of the robust distance is
based, which is defined analogous to the Mahalanobis distance.

RobustDist(x) = (x − µrobust)TΣ−1
robust(x − µrobust)

The robustness of the algorithm is steered by setting the size of the subset h. While a
value of h = 1 yields to the calculation of the classic covariance matrix, a setting of h = N+p+1

2

leads to the maximum robustness which allows nearly 50 % outlying values.

3.3 Clustering

Cluster procedures search for groups in the data. For this work the k means [50] as well as
the fuzzy k means [17] and a hierarchical clustering approach based on merging are of high
importance.

3.3.1 k Means Clustering

The user has to specify the number of clusters k that should be created. There are several
possibilities to choose the k initial cluster centers: k randomly selected data items or k randomly
determined points in the hypervolume enclosing the dataset can be used. Because different
initial settings can lead to significantly different results the starting centers already determine the
quality of the final partitions. The clustering itself performs two steps that iteratively improve
an overall energy function. The first task is to assign each data item to the cluster with the most
similar (nearest) cluster center. The second step recomputes all cluster centers by calculating
the means of all objects of a cluster.

This update procedure minimizes the sum of distances between the data items and their
nearest cluster center. As convergence criterion a minimum update limit for the cluster centers
can be set. If no center update exceeds this limit the algorithm stops. Another common stopping
criterion is a maximum iteration number, that should be performed [62].

3.3.2 Fuzzy k Means Clustering

The fuzzy k means, also known as the fuzzy c-means (FCM) algorithm [17], is the most popular
fuzzy clustering algorithm. Similar to the k means clustering the number of clusters k has to be
specified. Afterwards the memberships for each data item to each cluster have to be initialized.
The membership indicates how strong a data item is associated with a cluster. The membership
values are stored in the matrix U, which has a dimensionality of k × N, where N indicates the
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number of data items. Typically the membership values ui j lie within the intervall [0, 1] and
satisfy the constraints

∑k
i=1 ui j = 1 for all j, meaning that the maximum possible membership of

a data item is split up between the clusters.

The fuzzy k means optimizes the following objective function:

k∑
i=1

n∑
j=1

um
i j

∥∥∥x j − ci

∥∥∥2,
where x j represents the j-th data item and ci the i-th cluster center. m is the so called

fuzzifier that influences the fuzzyness of the cluster result and can be set to values within the
interval (1,∞). A value of m near 1 creates a hard clustering result. The higher the value of m is
set, the more fluent are the transitions between clusters. Typically the fuzzifier is set to m = 2.
To minimize the given objective function two steps are performed iteratively:

1.) The membership values are updated by calculating

ui j =
( k∑

r=1

∥∥∥x j − ci

∥∥∥2/(m−1)∥∥∥x j − cr

∥∥∥2/(m−1)

)−1
.

2.) The cluster centers are recomputed by calculating the membership weighted mean of the
data items according to

ci =

∑n
j=1 um

i jx j∑n
j=1 um

i j
.

As convergence criterion a minimum update limit for the memberships ui j can be applied.
If no membership value exceeds the given limit, the iteration stops. Additionally the maximum
number of iterations can be set, to avoid long computation times.

Hierarchical Clustering

A hierarchical clustering that is based on a merging criterion starts by declaring each data item
as initial cluster. Afterwards the two most similar clusters are merged to a new cluster. This
procedure is iteratively repeated until only one cluster exists. A hierarchical clustering that is
based on a splitting criterion starts with one cluster holding all data items and splits the existing
clusters into two partitions until each data item lies in its own cluster.

The nested cluster structure that is created by these methods can be represented by a
dendrogram, which is similar to a tree structure. Each node represents a cluster and has two
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children unless it is a leaf node. Leaf nodes represent single data items. The nodes in a level
divide the dataset in clusters. On level 1, which consists only of the root node, there is one
cluster representing the whole dataset. On level 2 the dataset is partitioned in two clusters. On
level N the dendrogram holds N clusters, each representing a data item of a dataset with N data
points.

The most popular hierarchical clustering procedures are variants of the single-link or
the complete-link algorithms. The single-link algorithms define the cluster similarity as the
minimum of the distances between each pair of data items formed by one data point from each
of the clusters that are compared. The problem that arises from this approach is called chaining
and means that the cluster shapes can be elongated, if in each iteration an object is added to the
cluster that is part of a chain of data items that points into a certain direction in the data space.
The complete-link algorithms calculate the cluster similarities as the maximum distance that
the previously mentioned data item pairs of the compared clusters have. This yields to more
compact clusters [62].

3.4 Principal Component Analysis (PCA)

The principal component analysis [61] introduces a linear transformation of p dimensional data
items on new axes, the so called principal components, where the first m < p components hold
the majority of the overall variance represented by all p components. Thus the linear transfor-
mation of the p original data dimensions X1, . . . , Xp to the principal components Y1, . . . ,Yp has
the properties of:

• falling variances in the principal components: Var(Y1) ≥ Var(Y2) ≥ · · · ≥ Var(Yp)

• preserving the overall variance in the data:
∑

Var(Yi) =
∑

Var(Xi)

• no correlations between the values mapped on two principal components: Cor(Yi,Y j) = 0

The transformation matrix A that realizes the mapping from the original dimensions of
the data to the principal components holds in its columns the eigenvectors of the covariance
matrix Σ of the dataset in descending order of their eigen values. If αi indicates the eigen vector
with the i - highest eigen value the transformation can be written as:

Y = AT X =


αT

1

αT
2
...

αT
p

X
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3.5 Linear Regression

The multiple linear regression [82] [64] approximates the values yi of an attribute by finding a
linear function in p independent variables and applying it to their values. Thus the approxima-
tion of the values ỹi is computed by

ỹi = β0 + β1xi1 + · · · + βpxip.

The regression parameters βi are calculated by

β = (XXT )−1XT y,

where X represents the design matrix holding 1 entries in the first column and the values
of the p independent variables in the remaining columns. Because each row represents a data
item with a leading 1, X has the dimensionality N × (p + 1). β represents a vector holding all
regression parameters and the vector y contains the corresponding values of the data items in
the attribute that should be estimated by the regression.

3.6 Theoretic Distributions and statistical Tests

Theoretic distributions [82] are characterized by their probability density function (pdf), a non-
negative function, which has an integration value 1 over the range of −∞ to +∞. Additionally
the distributions have different parameters that steer the shape of their pdf. The pdfs of the dis-
tributions of importance for this work and their parameters are shown in table 3.6. Each of those
functions has parameters that influence the shape of the distribution. The normal and log normal
distribution uses µ as setting for the center and σ for steering its spread. As standard settings
µ = 0 and σ = 1 are common. In contrast to that for the uniform distribution the interval limits
a and b have to be set, for what the unit interval is taken as standard property. The exponential
distribution has the parameter λ steering the magnitude of the decay and the maximum value of
the pdf. The setting λ = 1 is used in this work, if nothing else is specified. The shape of the
chi-squared distribution is influenced by the degrees of freedom DF. Furthermore its pdf refers
to the gamma function

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Besides the pdf, the cumulative distribution function (cdf) is helpful for calculating quan-
tiles. The cdf is the integral of the pdf. Because the pdfs of the normal and log normal distri-
bution can not be integrated analytically a numerical integration scheme has to be applied for
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Distribution pdf

Normal distribution f (x; µ, σ) = 1
√

2πσ
e−

(x−µ)2

2σ2

Log normal distribution f (x; µ, σ) = 1
√

2πσx
e−

(ln(x)−µ)2

2σ2

Uniform distribution f (x; a, b) =
{ 1

b−a if a ≤ x ≤ b
0 else.

Exponential distribution f (x; λ) =
{
λe−λx if x ≥ 0
0 else.

Chi-squared distribution f (x; DF) =


1

2DF/2Γ( DF
2 )

x
DF
2 −1e−

x
2 if x ≥ 0.

0 else.

Table 3.6: Probability functions of distributions used for this work.

the calculation of quantiles and distribution values. The pdfs of the remaining distributions are
summarized in table 3.7, where the corresponding function of the chi-squared distribution refers
to the incomplete gamma function

P(a, x) =
1
Γ(x)

∫ x

0
e−tta−1dt, for a > 0.

Distribution cdf

Uniform distribution F(x; a, b) =


0 if x < a
x−a
b−a if a ≤ x ≤ b
1 else.

Exponential distribution F(x; a, b) =
{

0 if x < 0
1 − e−λx else.

Chi-squared distribution F(x; DF) =
{

0 if x < 0
P(DF/2, x/2) else.

Table 3.7: Density functions of distributions used for this work.



3.6. THEORETIC DISTRIBUTIONS AND STATISTICAL TESTS 40

To realize hypothesis testings that validate if a set of values comes from a theoretic dis-
tribution, the Kolmogorov-Smirnov test [29] has been implemented. Therefore an empirical
cumulative distribution function is created of the sample holding for each value x the number of
data values that are smaller or equal than x divided by N, which indicates the overall number of
objects in the sample. This function is compared to the pdf of the given theoretic distribution.
The largest absolute difference on a position x is stored as Kolmogorov-Smirnov statistic. Fi-
nally the significance for the test statistic is evaluated by calculating the Kolmogorov-Smirnov
probability function. If this significance value exceeds a user defined limit (limits of 0.05 are
common), the null hypothesis stating that the sample comes from the given theoretic distribution
is kept.

This approach can also be used to test if two sets of values show the same distribution.
Therefore the empirical cumulative distribution functions of those samples are compared.



Chapter 4

Integrating Statistical Functionality in
Visualization

As previously outlined visualization techniques and statistical routines have similar objectives,
but try to reach them using different means. This section discusses those issues by the tasks of
group finding in high dimensional data and grouping of dimensions as well as for the detection
of outlying values. For this purpose the strengths and weaknesses of the two disciplines are
discussed theoretically and illustrated by concrete examples. The artificial datasets for these
demonstrations are created with R [5] [31]. The visualizations are realized - if not differently
stated - with a Java [6] application that uses the results of the functionality from the statistics
library.

4.1 Statistical Techniques

Computational routines can fulfil a large number of calculations to filter information of special
interest. Thus they are able to perform general purpose computations like the detection of the
main trends or make numerical summaries of dimensions available. Nevertheless they lack the
fast and immediate adaptation to the current dataset, which may not apply to the constraints
that a statistical approach asks for, or which shows structures that may distort the results of an
applied algorithm. The following paragraphs analyse these issues by selected tasks in the data
mining process.

4.1.1 Grouping of Data Items

In data mining applications clustering techniques play a central role and are a very popular
method for finding the essential information that is hidden in large high dimensional datasets.

41
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Thus a huge variety of clustering routines has been developed and adapted to handle specific
problems. Hence a clustering routine tuned for a certain task can introduce a meaningful parti-
tion of the data. But if there is no knowledge about the data and a general clustering procedure
is used, no statement about the quality of the resulting clusters can be made. This issue can
easily be discussed on the basis of the k means clustering algorithm, which is one of the most
popular group finding heuristics.

The principal task that the user has to do before starting a k means procedure is to specify
the number of groups k that should be considered. This is the first and already crucial step for
obtaining a meaningful partitioning of the data. For this task in general a solution can only be
found by try and error approaches or by experience values, if no information about the data is
present in advance of the data mining process. The next drawback of the algorithm is that it
converges to a local optimum, which means that the found solution can be far worse than the
best possible k means clustering. To measure the quality of the found partitions the value of the
k means objective function can be considered. But even several starts of k means clustering and
the choice for the best solution can not guarantee a certain minimum quality. Furthermore the
found clusters may not be suitable for the given dataset, because k means clustering creates in
general spherical partitions, which may not represent the groups in the data properly.

As this example based on the k means approach shows, there are a number of uncertain-
ties in applying a clustering procedure on a dataset. Thus the usage of those routines assumes
the knowledge about the shape of the created clusters and the weaknesses of the used algorithm.
Even clustering frameworks like gCluto [97], which provide a set of basic cluster routines with
different objective functions and similarity measures, can not guarantee an optimal partition-
ing, even though standard settings and a clear graphical user interface differentiating between
power users and users looking for fast results is provided. Certainly there are statistical meth-
ods like the Bootstrap Clustering [72] to test the reliability of clustering results by inspecting,
if small changes in the data would yield to a significantly different partitioning. But this is no
guarantee that a stable solution is also a reasonable grouping of data items. Also the field of
cluster validity [48] [49] concentrates on the evaluation of the number of clusters and the set-
tings for a clustering routine that are the best to fit the structure of the underlying data. However
these methods require high computational effort and the interpretation of the results demands
knowledge about the validation techniques.
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4.1.2 Grouping of Dimensions and Feature Subset Selection

To partition a set of attributes into groups it is important to investigate the relationship be-
tween the dimensions. The correlation is a popular and easy to interpret mean of statistics that
analyses the coherence between variables. It indicates linear consistencies in the values of the
compared attributes and thus can be used as a similarity measure between dimensions. The use
of the classic correlation can be strongly influenced by outlying values. Hence the computation
of robust correlation coefficients, which are resistant against the impact of extreme values, is
recommended. The comparison between the robust and the classic measures can also indicate,
whether there are outlying data values, which do not correspond to the domain of the majority
of the data.

To demonstrate the differences between the classic Pearson correlation and the two robust
estimates according to Kendall and Spearman two examples are shown in figure 4.1. The first
dataset consists of 500 bivariate standard normal distributed data items and 10 data items with
the same properties but shifted from the origin. While the classic correlation already indicates
a strong relationship between the dimensions, the robust coefficients state correctly that the
attributes are not correlated. Furthermore the Spearman and Kendall correlation are able to
indicate non linear dependencies between variables. This is shown in the second example,
where the dimension Y holds the exponential values of X. Consequently the robust measures
indicate perfect correlation. The Pearson coefficient also predicts a very strong dependency, but
not that accurately. The reason for this is that the robust measures only consider the ranks of
the dimension values for the calculation, which is also the reason for their robustness. If there
is the need for a robust correlation coefficient that only detects linear correspondence patterns,
a robust estimate of the covariance matrix can be considered. As the covariance matrix contains
the variances of the attribute values and their covariances it provides important measures that
roughly describe the shape of the high dimensional data cloud. But both estimates can also be
used to calculate the correlations between the dimension pairs.

But although the comparison between robust and classic correlation measures can reveal
the presence of outliers, this information can not help to identify or exclude those extreme values
from further calculations. Also the detection of local correlation patterns can not be realized in
this way.

As the correlation coefficients can be seen as a similarity measure for dimensions a hier-
archical clustering based on the correlation matrix as starting point instead of a distance matrix
between data items, is practical for the identification of groups in a set of dimensions. Therefore
the correlation matrix holds the correlation coefficients for all possible dimension pairs. The
hierarchical clustering provides a dendrogram structure as result. This allows the user to select
the number of groups in the dimensions. As feedback concerning the quality of the groups the
minimum absolute value of correlations between the dimensions within a cluster is available.



4.1. STATISTICAL TECHNIQUES 44

Figure 4.1: Two examples showing the differences between classic and robust correlation mea-
sures in the presence of outliers (a) and non linear functional dependencies (b).

The higher these minima are the more similar are the attributes in a cluster. Also for this cluster-
ing procedure robust correlation computations are recommended. Certainly the fact that there
are groups of data items having the same correlation pattern is neglected. This yields to the
result that the most dominant group determines the dimension grouping or that equally strong
represented groups cancel out their correlations.

A discussion of the drawbacks of a clustering of dimensions soon leads again to the disad-
vantages of the automated group finding itself mentioned in the previous section. Additionally
the choice of the measure indicating the similarity between dimensions poses another challenge.
While the dissimilarity for the clustering of data items can be intuitively defined by a distance
measure, the measure for the attribute relationship should be chosen according to the needs of
the user. The definition of the similarity strongly depends on the aim of the investigation and
on the properties of the data. Should only linear or also non-linear relationships be detected?
Should significantly large groups in the data already indicate correlations? And finally can any
correlation measure introduce a reasonable grouping of the dimensions? Besides the correlation
also other similarity measures can be defined, which is discussed by Ankerst et al [12].

Thus the main drawback of this grouping approach is that an interactive visual inspection
of the introduced similarities is missing, if only the statistical technique is used. Consequently a
fully automated feature subset selection choosing one attribute per introduced dimension group
suffers the previously mentioned problems. Additional uncertainty arises by the heuristic that
selects the variables. The first question to answer is how many groups achieve the best match
with the structure of the dimension relationship and consequently how many dimensions have
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to be selected? Also a choice for a variable per cluster has to be made, which strongly depends
on a measure of interest defined by the user. Examples would be the dimension holding the
highest variance of its values or the dimension which could be considered as the center attribute
of a cluster. However a feature subset detected by this heuristic needs further inspection of
the relationship and manipulation of the intermediate as well as the final result by the user.
Therefore a visual exploration assisted by numerical facts computed by statistical routines is a
necessity.

Besides of this feature subset selection based on a dimension grouping, in the field of
machine learning heuristics have been proposed to choose certain attributes of the data for
unsupervised learning procedures like clustering. Those routines are in general involved with
higher computational costs and the introduction of a measure that indicates the quality of a
chosen dimension subset. This measure can be based on the solutions of a certain process like a
clustering or an outlier detection. There it is examined if the subset of dimensions produces the
same or even better results with respect to the given task as the use of all attributes. But subsets
are selected for these specific tasks and can not be seen as the optimum subset for a general
purpose data exploration. Furthermore the heuristics introduced to avoid the inspection of all
possible 2p feature subsets of a p dimensional dataset, calculate a result that is a local optimum,
which - like a clustering solution - may be far worse than the best possible subset of attributes.

4.1.3 Dimension Reduction

Dimension reduction algorithms can not be used for the identification of attribute groups. They
actually suffer from losing the reference to the original attributes of the data. PCA and projec-
tion pursuits create linear combinations of the dimensions, in which the data items are defined.
For a data dimensionality of 10 or more it is hard to understand which effects a data attribute
has on a principal component for example. Furthermore there are no parameters for simple
methods like the PCA that steer its performance. If a projection of the data on two dimensions
should be achieved, but the first two principal components only explain a low fraction of the
variance in the data, the user must choose more principal components to capture the majority of
the information. But nevertheless the PCA provides with the explained variance a hint for the
quality of the dimension reduction.

More complicated is the user’s task for SOMs and MDS operations. The fact that any
linear and non-linear mapping of the data on a low dimensional subspace is possible has tremen-
dous drawbacks. In general no statement about the quality of a given mapping can be made.
While the PCA provides with the explained variance a guide to which extend the spread of the
data is captured, the results of other routines have to be examined and explored to identify how
stable and reliable they are. There is also no linear function that combines attributes to new
dimensions. So in general there is no reference at all to the original data dimensions. Further-
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more the SOM algorithm and its huge number of adaptations provide a vast variety of settings
that can not be easily accommodated to a dataset to achieve a reasonable dimension reduction
result. The same applies to implementations of an MDS algorithm. For example spring models
that approximate the dissimilarity of data items in the p dimensional data space in a low dimen-
sional subspace introduce a huge number of settings concerning the convergence of the model
and the properties of the springs.

SOMs are of special interest for the visual analysis of multivariate data because its algo-
rithm incorporates a mapping from p variate data space to two dimensions. Thus visualizations
can be easily achieved and results can be presented. Nevertheless the two dimensional repre-
sentation of the dataset does not depict the data items. The visualization is built on the model
vectors to which data points can be assigned. Thus interactive exploration of the data may be
difficult and not that intuitive because of the introduced abstraction. On the other hand SOMs
also provide an implicit clustering of the dataset, because the model vectors try to represent the
data and agglomerate, where the density of data items is high. But this fact is not conveyed
because in the two dimensional mapping the grid positions are evenly spaced. But as the SOM
is an unsupervised learning algorithm like the clustering it suffers the same disadvantages. Fur-
thermore there is no objective function that can be optimised to compare mapping results, and
even the consequences of the setting of the parameters on the mapping process are not obvious.

4.1.4 Outlier detection

For this discussion the outlier detection based on distributions, on distances to neighbouring
objects and on the density is considered. Those principal techniques have in common that they
provide parameters that the user can (possibly interactively) change to examine their behaviour
on the underlying dataset and thus steer the number of detected outliers. Nevertheless those
changes are difficult to interpret, if only a numerical output is provided. Certainly the user
can examine the detected data items and compare them to items that are considered to be near
the center of clusters or the whole dataset itself, but the possibilities of interactive visualiza-
tion applications would enrich these exploration tasks significantly, because besides the visual
validation of the results the impact of parameter changes can be investigated.

The distribution-based techniques provide both a statistical characterization of one di-
mensional outliers as well as the detection of high dimensional data items that do not fit to the
trend of the majority of the data. A one dimensional outlier detection starts with the robust esti-
mate of the center and the scatter of the sample. By the quantile of the assumed distribution of
the dimension values the user steers the number of detected outlying values. The disadvantage
of this approach is that the theoretic distribution used for the quantile calculation has to match
approximately the distribution the sample comes from. The statistical routine itself also does
not investigate, if there are gaps in the data, which would indicate the limits of groups or the de-
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cision boundary for the classification of outliers and non-outliers. Furthermore a visualization
of the one dimensional data by histograms enriched with interaction techniques would provide
a more efficient outlier detection tool as those statistical approaches, because the human visual
system is able to identify outliers easily in a space of a dimensionality up to 3.

In contrast to that the statistical outlier detection for high dimensional data has the advan-
tage, that there is no visual competitor, that allows an easy identification of outlying data items
by the user. The distribution-based approach computes the robust distances according to an
estimate of the distribution model of the p dimensional data items and classifies data points as
outliers if their robust distance is higher than a user defined quantile of appropriate distribution.
If the data is assumed to be p dimensional normal distributed, a quantile of the chi-squared dis-
tribution with p degrees of freedom is used. This approach guarantees the detection of p variate
outliers, instead of the classification of outlying objects in a low dimensional subspace as long
as the data nearly corresponds to the multivariate normal distribution. By using the robust dis-
tance a one dimensional measure for the outlyingness is introduced. Hence a visualization can
help to decide, whether the detected outliers are significantly different than the majority of the
data, by showing gaps in the distance values, because the problem is again reduced to a one di-
mensional outlier detection application. Especially the interactive modification of the quantile
values would introduce a tremendous improvement for the efficient outlier identification.

The drawback of this approach is that the data has to approximately show a p dimensional
elliptic distribution. Other distributions do not provide such an elaborate theoretical background
as the normal distribution does. Consequently it can be a problem to apply other distribution
models on this approach. Furthermore it may be cumbersome to transform an arbitrary dataset
so that it applies to this assumed distribution. Also groups in the data do not allow useful results.
Thus the main disadvantage of this approach is that the data has to satisfy certain constraints.

Density-based and distance-based approaches do not assume distribution properties of
the data. Therefore they rank the outlyingness of a data item according to the number and the
proximity of its neighbouring objects. The main disadvantage of those algorithms is the tuning
of the parameters, which can not be intuitively made. These settings also have to be adapted
for each dataset, because other density properties and the different number of data items make
a reuse of parameters not possible. Thus a visual feedback could certainly help to verify, if
reasonable parameter values are used.

Furthermore the higher the dimensionality of the data the more doubtful the calculations
of the k nearest neighbours are, because the magnitude of the distances becomes higher and
differences are represented by least significant places of a floating point number. Thus the
setting of the parameters becomes more difficult because, small changes in the values can lead
to tremendous changes in the outlier detection result. In this case a preparation of the data by
dimension reduction or feature subset selection has to be performed.
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4.2 Interactive Visual Data Analysis

Information visualization applies the extraordinary human pattern recognition skills to explore
data. Combined with the possibilities of interactive updates and modifications of the visualiza-
tions and the linking of different views, which allow insight to certain aspects of the multivariate
data, the visual data analysis became a very powerful and important tool in the field of data min-
ing. But as the user of such applications is not used to think in higher dimensional spaces, this
concept has also shortcomings. These issues are discussed in this section for the finding of
groups in the data and dimensions as well as for the identification of outliers.

4.2.1 Grouping of Data Items

The search for groups in multivariate datasets by information visualization applications de-
mands the use of linked views that present different aspects of the data. As example one view
could depict all (relevant) dimensions of the dataset, while the second view helps to identify
low dimensional patterns like the correlation between dimensions. Thus the combination of a
parallel coordinate technique illustrating all variables of the data and a scatterplot visualization
for a more intuitive investigation of structures can be very efficient. Furthermore the possibility
to select data items has to be possible in all used views. The selection performed in one view
should be visually propagated. This is usually achieved by drawing selected data items in a
certain colour.

To make use of the fact that a visualization technique provides an insight to a specific
aspect of the data, also the selection possibilities have to contribute to this issue by allowing
the user to work with these aspects. This can be explained for example by considering the
parallel coordinates. Of course selections can be drawn on the axes so that only those data
items are marked showing data values within the selection intervals of each attribute. But the
parallel coordinates also show the correlation patterns between neighbouring variables very
well. To capture this aspect by a selection type the angular brushing [53] has been introduced.
With angular brushing those data items are selected that have a line segment featuring an angle
within a specified angular range. Thus data points having the same correlation properties can
be highlighted.

But these adaptations do not only affect selection techniques. Also visualization specific
interaction capabilities can improve the visual group finding process. For this purpose paral-
lel coordinates provide a reordering of displayed attributes, which allows the alignment of the
variables so that similar dimensions are placed near to each other. This significantly improves
the detection patterns spanning several dimensions. Furthermore flipping of axes can be real-
ized so that the minimum is shown on top of the screen space. This operation visually inverts
correlation patterns, which allows displaying positive and negative correlated dimension pairs
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similarly. Thus linear functional dependencies between attributes are illustrated in only one
way. As this example for the parallel coordinate view shows, each visualization technique has
its own capabilities to facilitate the cluster detection.

The detection of a group in the data could be achieved by iteratively drawing selections
according to visual patterns like gaps or peaks in the distribution of the dimension values. By
creating several selections on the axes of the parallel coordinate view a multidimensional cluster
can be defined. How stable the cluster is, can be verified by shifting or resizing single selections.
If there are tremendous changes introduced by one of these operations, then a cluster can be
considered as arbitrarily defined and thus not justified by the structure of the data. The use of
angular brushes in contrast to that could select data items that have the same correlation patterns
within any depicted pair of dimensions. This may lead to different clusters satisfying constraints
that are not based on the dimension value ranges. Of course also combinations of these selection
techniques can be applied. But as this variety of possibilities to determine a cluster in parallel
coordinates grows exponentially with the number of dimensions, a multitude of solutions exist.
To find those partitions that fit the real structure of the data is by far not trivial.

To introduce also an uncertainty aspect of the selection for data items, where it is not sure,
whether they belong to the detected group, fuzzy selections [43] were proposed. This allows
an extension of the selection concept, where not only the states selected and not-selected are
possible [34]. To achieve this a degree of interest (DOI) is set for each data item having values in
the interval [0, 1], where 0 indicates not selected objects, 1 marks data points of special interest
for the user and values between express the degree of uncertainty.

Nevertheless the interactive selection of data items has the main drawback, that only
one or two dimensional patterns are used for selections. Thus a cluster having multivariate
properties can not be detected by investigating low dimensional aspects of the data. The fact
that there is no clue for the quality of the selected group, make the detection of multivariate
clusters via interaction techniques nearly impossible. Certainly different aspects of the data
expressed by the visualizations can be examined to assess the reasonableness of groups, but this
assessment depends on the user’s skills concerning visual data mining and his/her knowledge
about the data. Furthermore the data analysis of several experts may create slightly different
solutions. So this categorization by a visualization tool also suffers the same problems as the
use of different cluster algorithms: Results may be similar but not exactly the same.

A further disadvantage is that the creation of a detected group can not be reproduced.
Only a protocol, capturing all interaction processes, allows the traceability of forming the clus-
ters. But such an approach can only record the actions taken by the user. There are no semantics
explaining, why a selection has been drawn with a given interval and so forth.
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From the viewpoint of the user a well implemented interface allows a pleasant work with
selections and linked views. But if the dimensionality of the data is high, it will be cumbersome
to work with high dimensional visualization techniques such as parallel coordinates. Also the
fact that many attributes have to be considered for the selection process causes the user to
invest time and concentration to keep track of the actions done so far. The distinction between
important dimensions and not interesting variables becomes more crucial and can not be easily
achieved visually. Again knowledge about the data or experience values have to be applied to
choose the essential attributes.

Also the placing of similar dimensions near to each other in views like the parallel co-
ordinates is important to improve the detection of structures and trends in the data. But as the
number of possible orders grows exponentially with the dimensionality, it becomes cumber-
some to rearrange the dimensions of a high dimensional dataset manually. A heuristic should
be applied to accomplish an initial solution. But not only the placing of dimensions in views is
concerned with this issue also the order of the usage in techniques such as worlds-within-worlds
or dimensional stacking highly influences the pattern perception. Also pixel bar charts, which
use attributes for splitting, ordering and colouring purposes, can reveal certain trends by assign-
ing the variables to a certain operation. But it may be laborious to figure out the best dimension
assignment.

4.2.2 Grouping of Dimensions and Feature Subset Selection

As discussed in section 4.1.2 the correlation is a significant measure to observe similarities be-
tween dimensions. Information visualization provides techniques that allow the interactive in-
vestigation of correlation patterns between attributes. For the exploration of these relationships
it is not important, if the majority of the data items are correlated. Also subgroups showing the
same functional dependency between two attributes can be detected and thus also a clustering
of data points can be introduced based on these patterns as outlined in the previous section.
But although those local correlations can be detected in views like scatterplots or parallel co-
ordinates, where even tools like the angular brushes encourage exploring these aspects of the
data, a numerical feedback validating a significant coherence between the selected objects on
the dimensions of interest is missing.

To group the dimensions of a dataset, those investigations can be made for each pair
of dimensions. But as the dimensionality grows this approach becomes inefficient. Even the
presentation of all tuples of attributes in one view like a scatterplot matrix does not allow the
fast identification of groups in the variables unless the correlation patterns are very clear, what
is in general not the case.
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Apart from the challenges of the grouping process also the selection of representative
attributes per dimension cluster can not be realized easily with visualization tools. The easiest
way is to use the variables showing the highest variance of their values. But this task should be
automated and not be achieved visually by examining the value ranges of the dimensions.

4.2.3 Outlier detection

The detection of one-, two- or three-dimensional outliers can be achieved easily with the means
of visualization. Histograms as well as 2D and 3D scatterplots allow the human visual system
to identify data items that seem to have different behaviour than the majority of the data. Gaps
between objects as well as significant displacements against the main extent of the point cloud
are indications for outlying values.

But as the dimensionality of multivariate datasets does not allow a depiction of all at-
tributes of the original data items in a scatterplot, the intuitive investigation of the three di-
mensional space can no longer be applied. Like the detection of high dimensional groups in
the data the search for multivariate outliers needs a huge variety of visualization and brushing
techniques. But in contrast to the task of finding clusters the search for correlation patterns and
groups in dimension values is now focused on a very small subgroup of data. Thus it is easier
to define the overall behaviour of the majority of the data and invert the selection to detect out-
liers, because besides the high dimensionality the fact that outliers are heterogeneous in general
makes this task difficult.

New developments in the visualization of high dimensional data try to emphasize outly-
ing values so that they are not overlooked caused by the clutter introduced by dominant patterns.
But those methods often identify high dimensional outliers by examining extreme values of the
variables separately. A robust estimate of the location and the scatter of the values of the dimen-
sions is used to identify one dimensional outliers. But a simple example with data items defined
in two attributes shows already that a one dimensional outlier does not identify outlying values
in the data space. In figure 4.2 an example is shown by a two dimensional scatterplot and a
parallel coordinate view. The scatterplot reveals that there are two groups of data, an elongated
diagonal group holding the majority of data items and indicating a correlation between the two
dimensions and a spherical point cloud deviating from the major trend. Furthermore solid lines
indicate the medians of the attribute values. The dashed lines represent the decision boundaries
for the one dimensional outlier detection, which uses 1.5 times the inter quartile range added
respectively subtracted from the median. It is shown that this approach detects the outlying
values of the major point cloud. But the small group that is shifted from the center of the data is
not identified. Nevertheless both the objects marked as outliers as well as the not detected group
should be considered as special data points, that may be created because of other reasons than
the remainder of the data. This shows that the group of outlying values can be heterogeneous,
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Figure 4.2: A two dimensional dataset demonstrating the failure of one dimensional outlier
detection for the identification of high dimensional extreme values is visualized with a 2D
scatterplot and a parallel coordinates view. The objects at the margin of the large elongated
group are detected as outliers (green), while a small group shifted from the center of the data
(red) is not identified.

because there are at least three subgroups showing different behaviour. The parallel coordi-
nate plot shows the same data and stresses the attention to the different correlation behaviour
of the groups. Consequently this example demonstrates the failure of the outlier detection per
dimension and how two visualization techniques present aspects of the data in different ways.

The example indicates the importance of correlation patterns. But they are not the solu-
tion for multivariate outlier detection. The correlation does not consider gaps in the data. Thus
if there are separated groups having the same behaviour between dimensions, but different val-
ues in the attributes, a selection based on similar correlation would highlight both groups as one.
Consequently the selection approach to detect outliers can be successful for a certain type of
outlying values, but it is not guaranteed to identify high dimensional extreme values that have
no significant pattern in one attribute or a two dimensional subspace. Furthermore the detection
of two dimensional features like correlation strongly depends on the ordering of the attributes in
the visualization. While scatterplot matrices provide all pairs of dimensions in the data, parallel
coordinates establish for each variable two neighbouring attributes. Thus the arrangement of the
visualized dimensions plays a crucial part for finding groups and outliers. Depending on which
attributes are set in relation to each other, different correlation patterns would be considered for
those tasks.
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4.3 Integration

In this section examples for the collaboration between the information visualization methods
and statistical routines are discussed. The aim is to show possibilities how drawbacks of a
technique of one of both fields can be redeemed by a procedure that was introduced by the other
science. Of course the proposed combinations are not able to overcome all challenges posed by
the analysis of multivariate patterns in the data or by the shortcomings of the used techniques,
but improvements for the visual data mining process are achieved. But as the data has to satisfy
certain constraints for the majority of the multivariate statistical procedures the usefulness of
transformations as well as their integration into an information visualization application are
outlined.

4.3.1 Data Preparation

As mentioned before distribution-based multivariate outlier detection assumes that the data
nearly applies to a theoretical distribution, while other procedures such as clustering require
the dimensions to have the same range of values. Clustering approaches are especially sensi-
tive to the scale of values per dimension, because they mostly base their similarity calculations
on distance measures like the Euclidean distance. This implies that if one attribute shows sig-
nificantly higher value differences between the objects, these relations strongly dominate the
results of the distance computations and thus the clustering solution.

This issue is demonstrated in figure 4.3, where a dataset containing four groups of data
items defined in the attributes X and Y is used for a k means clustering. The left plot shows that
the attribute X has a strong influence on the clustering, because of its high values in comparison
to the other variable. Thus the groups are defined as sections on the dimension X. The right
visualization illustrates that the group finding process on the attribute values transformed to the
unit interval is successful.

But also simple linear scalings to the interval [0, 1] can fail, if there are extreme values in a
given dimension. Thus these deviating items are mapped near to a limit of the value range, while
the remainder of the data values are projected towards the other limit. The main information
that remains in the transformed variable values can be seen as a binary decision, if a data item
is an outlier in this dimension or not. This issue can have negative impact on multivariate
procedures such as clustering or the principal component analysis. As alternative the robust z
standardization could be applied to all attributes, which maps the actual data at approximately
the same value range. Extreme one dimensional outliers still have major influence, but the
essential information of this dimension is not compressed to a small interval of values.
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Figure 4.3: The impact of different value ranges of attributes on k means clustering algorithm
is demonstrated based on a two dimensional dataset showing four groups.

An example for this issue is shown in figure 4.4. A dataset containing four normal dis-
tributed groups defined in two dimensions with the centers at the positions (0, 5), (4, 0), (7, 15)
and (10, 500) is shown in the left scatterplot. After applying a mapping on the unit interval
for each attribute the principal components, which are shown in figure 4.4 (b), were computed.
The evaluated directions are not along the actual spread of the data, which is created by the
extreme values of one group in the variable V2 and by the shifted positions of the groups along
the dimension V1. By using the robust z standardization as transformation for the data, the
PCA computes these important directions correctly, as depicted in figure 4.4 (c). The impact of
the applied transformations that should compensate extreme values on the multivariate statis-
tical methods has to be considered and tested. The wrong usage of these mappings can create
misleading results.

4.3.2 Grouping of Data Items

For the detection of groups of data items the combination of a clustering procedure with the
possibilities of linked visualization views and their selection techniques obviously can achieve
benefits for the analysis of data. The clustering algorithm can partition the dataset automatically
before the user tries to identify groups visually. This division of the data into clusters is a more
efficient and comprehensible starting point for the visual analysis. The advantage of clustering
routines is that they perform their calculations in the data space and thus really introduce high
dimensional groups. The following interactions in the information visualization applications
can aim to explore the clustering result by modifying the views and analysing features of the
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Figure 4.4: This example demonstrates the impact of transformations of variables on the PCA.
The left scatterplot shows the original two dimensional data. The visualization in the center il-
lustrates the first and second principal component computed from the variables scaled to the unit
interval. The final scatterplot on the right depicts the first two principal components computed
from the robust z standardized attributes.

clusters. But it is also possible to investigate the validity of the partitions by modifying cluster
centers or by excluding dimensions and starting a reclustering. Especially if a certain cluster
algorithm is taken into account the possibilities for interactions are manifold but also strongly
depend on the used grouping approach. The following example discusses intuitive manipula-
tions of results of the popular k means clustering algorithm. Thus they can not be applied in
this way on a hierarchical clustering heuristic, which would alternatively provide a dendrogram
structure that allows different interactive modifications.

The k means approach introduces a hard clustering, where each data item is assigned
to one cluster. This allows the visualization of each group by assigning the same colour to its
members. Additionally the cluster centers, which are the representatives for the clusters and thus
used for interaction techniques, can be accentuated. By examining the cluster result in a view,
that depicts all dimensions of the dataset, such as the parallel coordinates, those dimensions
can be identified, which have major influence on the clustering procedure. These attributes
show a rather clear separation of the clusters. The reason for the disproportional impact on the
clustering can be caused by wrong transformations, that yield to different value ranges for the
dimensions, or that there is a group of dimensions explaining the same information and thus
bias the cluster process. But it can also indicate that those attributes explain the groups in the
data very well. To find the exact explanation for this issue the semantics of the dimensions have
to be examined.

To manipulate the cluster result a variety of possibilities can be provided. In the first
place the cluster centers can be modified. They can be moved to a new position or fixed, so that
a follow-up clustering can not modify their positions. Clusters can also be fixed, so that further
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procedures are not able to modify the membership of the cluster, or deleted, which causes
the assignment of its members to the partition with the nearest center. Furthermore clusters
can be merged to one group, which involves the calculation of a new cluster center. But also
subdivisions of existing clusters can be initiated by either applying a clustering algorithm on its
members, or by splitting them along a dimension, which introduces two new clusters having the
same cluster center coordinates in all attributes except for the splitting variable. The members
of the split cluster are assigned to one of the new created groups, by identifying the nearest
cluster center.

After those modifications have been performed, a new clustering can be started, that is
based on these settings, which are represented by the number of the cluster centers and their
positions. These techniques can be used to create partitions of higher quality with respect to
the energy function of the k means approach. If a modification results in a worse clustering,
an undo function can repair this mistake. Besides this issue the user can also verify how stable
the introduced clusters are. If small changes yield to significantly different partitions, this may
indicate that the used clustering algorithm does not apply well on the underlying dataset or
that there are no significant high dimensional groups. Furthermore the mentioned interaction
techniques allow the accommodation of the clustering result to the user’s visual impression
of the groups. The clusters can be modified so that they cover visual groups in the dataset
by repositioning the centers and assigning the data items to the group with the nearest center.
But also a hierarchical group structure can be introduced by manually starting subclustering
procedures for already created clusters.

The interactive collaboration between clusterings and the user’s modifications also allows
a more efficient exploration of the relationships between the attributes. Conclusions of the
behaviour of the clustering procedure yield to a better understanding. An example for this issue
is the snapping back of repositioned cluster centers. This can be caused by a large field of
attraction of a locally optimal partitioning solution or by the fact that the moving operations
were only fulfilled based on low dimensional features, that are not significant for a clustering in
data space.

To investigate the quality of a clustering and the shape of the introduced groups, an in-
tuitive visualization like the scatterplot is needed. Thus a projection of the multivariate data
on two or three dimensions has to be accomplished by dimension reduction techniques or fea-
ture subset selection heuristics. Although the illustration of the data in this visualization can
not capture the whole high dimensional information, it is still a hint, if the clustering introduces
meaningful partitions. Furthermore high dimensional groups that separate from other data items
by gaps can be identified, and a verification, if a single cluster covers these deviating objects is
easy to perform. On the other hand this approach is also a hint for the quality of a dimension
reduction technique, because the user can see, whether the most important information is cap-
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tured by the mapping, if the introduced cluster borders are sharp. Thus if members of different
clusters overlay in the visualization, aspects of the data that were considered for the clustering,
were not incorporated in the dimension reduction result.

Based on an intuitive low dimensional representation of the data, the outlined interaction
operations can be executed. In the case of the manipulation of cluster center positions, the
alterations of their position in the visualization have to be projected back into the data space.
This allows the inspection of high dimensional changes in the partitions and facilitates the
comprehension of multivariate cluster results. Furthermore the interactive actions are nearly
performed in data space and are no longer based on low dimensional patterns.

Certainly the use of dimension reduction introduces an intermediate layer that has to be
well understood and must produce stable and high quality results. Thus the PCA as the sim-
plest dimension reduction technique is recommended to allow the comprehension of introduced
modification. But even more important is the fact that the directions of the principal compo-
nents of a dataset are always the same, yielding to the same mapping, while other algorithms
like SOM and MDS can create different projections if a rerun is initiated. But the use of the
PCA involves also the fact that the variance in the data must be captured well in the first three
principal components. This issue or the alternative - namely the consideration of only a few
attributes - for either the clustering or the dimension reduction is a tremendous limitation.

But also a different combination of clustering routines and information visualization is
possible. Partitioning can be based on a subset of data items that has been selected in advance.
This allows the user to examine the high dimensional behaviour of data points that fulfil a certain
constraint like similar correlation patterns. It is also possible to introduce initial groups in the
data by the means of interaction techniques and start a clustering based on these settings. This
can be seen as a validation of the introduced partitioning as well as an interactive definition of
a starting condition for the clustering, which - depending on the used cluster algorithm - can be
crucial for the quality of the cluster solution. If a fuzzy clustering is considered, also the smooth
selection concept [43] could be applied.

In this sense a cluster can also be interpreted as a selection. Thus manually drawn selec-
tions and computed groups in the data could be used alternatively for the information drill down
process to identify data items of special interest. Consequently both techniques can build up on
the result of previous steps, which would represent an efficient collaboration between statistical
methods and information visualization techniques.
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The major drawback of these combinations is the non-existing traceability of the deter-
mined clusters, because either the clustering result has been manually modified or the inter-
actions that took place to initiate a clustering routine based on predefined partitioning can not
be easily translated into a set of parameters for the used algorithm. Thus it is a necessity to
capture the interactions and the initiated clusterings by a protocol that allows tracing back how
partitions have been introduced and where possible mistakes have been made.

Besides the integration of the clustering in the visual data mining process, it can also
introduce an abstraction of the data. Hence a clustering can be used to eliminate noise in the
high dimensional data space, that originates by fluctuations in measurements or by the nature
of the data itself. The determination of a large number of clusters, each representing only
hundreds of data items, can eliminate cluttering in visualizations and reveal the main structures
in the dataset.

Concerning the detection of significant patterns in the visual exploration a fuzzy cluster-
ing approach would allow even more possibilities to enhance a visualization. Because of the
fact that each cluster holds a membership value for each data item, this information can be used
for the colour and opacity of drawn objects. That approach can reduce clutter in the visual-
ization and enhance the perception of the distribution of the clusters. The location as well as
the main behaviour of the members of a cluster is stressed, because only data items near the
cluster center are drawn with full opacity. This is demonstrated by the example depicted in fig-
ure 4.5, where the dataset UVW [1] is visualized by a parallel coordinates view using different
colour settings for the 149769 data items. In the first visualization each data point is drawn
with the colour red and full opacity. The second illustration is based on the result of a fuzzy
k means clustering, where 6 clusters were created. Therefore the maximum membership value
of a data item is mapped to the opacity value of a data item. Its colour is a linear combination
of the cluster colours weighted by the membership values. This results in the accentuation of
the main patterns around the cluster centers, showing significant correlation properties between
and variance issues on the dimensions.

4.3.3 Relationship between Dimensions and Dimension Grouping

Statistical approaches allow a meaningful grouping of dimensions by measuring the relation-
ships between attributes. But a definition of similarity between dimensions focuses only on one
aspect to indicate how closely variables are related to each other. It strongly depends on the
needs of the user or the given task that implies a certain similarity measure. Furthermore there
exists the trade-off between local and global similarity. It is clear that visualizations can give a
more detailed insight into the relationships between two attributes. Interaction techniques also
allow an exploration of patterns that indicate similarities. But because of the high dimension-
ality of the data it is not possible to examine each pair of dimensions visually. These aspects
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Figure 4.5: The left parallel coordinates plot shows the six dimensional UVW dataset [1] con-
taining 149769 data items, while the right illustration reveals patterns by incorporating the in-
formation of a fuzzy k means clustering using 6 clusters.

justify the combination of the statistical approach and the interactive exploration by information
visualization techniques.

Once a computational similarity measure for dimensions is defined respectively selected
by the user, a clustering can introduce groups of dimensions. But these groups can only be
seen as an initial partitioning that has to be examined. Too many uncertainties accompany this
approach, so that the interactive modification of the clustering result is crucial. Thus a fast
examination of visualizations of the dimension pairs should be possible. The scatterplot matrix
is an efficient technique that allows this. But as the patterns of interest have to be detected
for each scatterplot, which is time consuming aside from the case that there are significant
correlations in the data, what can not be assumed, statistical approaches can ease this process.

Firstly it is possible to integrate the dimension clustering information into the scatterplot
matrix visualization. Scatterplots depicting attributes of the same cluster could be coloured
according to their cluster membership. Thus a categorization between visualizations showing
inter and intra cluster relationships can be easily made. Furthermore the similarity measure
for the dimension pairs can be shown per scatterplot as well as integrated into to the colouring
properties of the visualized data items. As a further indicator for the similarity between dimen-
sions a smooth regression technique such as LOWESS [26] could be applied. This approach
calculates linear regressions for partitions of the data and accumulates them to a smooth curve.
Thus the introduced curve identifies linear correlations by straight lines and deviations from
this pattern by significant curvatures. The effectiveness of this indication is demonstrated in
figure 4.6, where a scatterplot matrix uses a LOWESS curve and a linear regression to empha-
size the functional coherence between the illustrated variables. LOWESS has the additional
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Figure 4.6: A section of a scatterplot matrix illustrating the olives dataset. To enhance the
detection of correlation patterns a LOWESS (solid curve) and a linear regression (dotted line)
is visualized. This view was created with R [5]

advantage that it can be easily applied on subsets of the data and thus can also serve for the
identification of local similarity patterns.

As interaction technique the user could select dimension pairs by clicking on a scatterplot.
This would provide a simple mean for the interactive modification of the dimension clustering.
For example selected dimension pairs can be assigned to a new or an already existing cluster.
For a better visualization of the dimension group structure an alternative linked view showing a
dendrogram should be used. Interactive cluster hierarchy visualizations such as InterRing [122]
could also be applied to manipulate hierarchical cluster structures. But this visualization can
not replace the discussed concept of the scatterplot matrix, which allows the examination of
dimension similarities.

This concept can be enhanced by visualizing a scatterplot matrix using only the attributes
of a selected cluster. Additionally the mean dimension can serve as cluster center, and in the
main diagonal of the scatterplot matrix each dimension is plotted against this center of the
variable group. This would allow an analysis of the deviation and the dissimilarity of attributes
to their cluster center. Additionally a categorization of dimensions that are at the boundary of
the group and thus maybe part of a different cluster can be made.

If the user wants to examine the similarity between two dimensions in further detail,
selection techniques can be combined with numerical feedback of computed similarity mea-
sures based on a scatterplot visualization showing the attributes in question. Especially for the
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exploration of local relationships between two attributes it is a necessity to interactively high-
light the data items that indicate this pattern. Additionally the similarity measure in use can be
recomputed based on the currently selected subset of data points. This allows the numerical
verification of a visually detected feature of the dimension pair. The use of correlation mea-
sures can even create a more accurate tool. Because of the fact that values of classic and robust
correlation measures diverge in the presence of outliers, both calculations can be applied to
interactively identify data items that contradict the local or global correlation pattern. Linked
with the changes of selections the correlation measures have to be recomputed and finally show
nearly identical values, if no outlying object is highlighted. Certainly this procedure can not
be applied to a large number of dimension pairs, but it may be useful to decide, whether a
dimension at an attribute group boundary can be assigned to the cluster in question.

4.3.4 Outlier detection

As multivariate outlier detection is difficult to accomplish by the means of information visual-
ization, because of the possibly heterogeneous behaviour of the outlying items that should be
identified, a statistical routine could establish an initial solution for this task. Afterwards visual-
izations combined with interaction techniques provide efficient means to examine the computed
result and to steer the provided parameters that decide how many data items are classified as
outliers. It is important that immediate visual feedback is given for the parameter tuning. Oth-
erwise no advantage in comparison to a static post visualization of the outlier detection result
is achieved. The possibilities of interactive linked views that provide insight into different as-
pects of the multivariate data also allows a manipulation of the results of the algorithm, which
is independent from the parameter settings. For example data items that are misclassified by
the statistical functionality could be manually selected and assigned to the correct group. Fur-
thermore a details-on-demand approach could help to investigate, why these data items were
categorized in this way, by showing the computed degree of outlyingness or the facts on which
the automatic classification was based. This would also provide hints for the improvement of
the parameter settings or possible future executions of the statistical algorithm.

If the current data mining task is not primarily concerned with the identification of out-
lying objects, also an on-the-fly integration of outlier detection information in the interactive
visual exploration can be accomplished. In the case that the user visually detects data items that
seem to deviate from the main behaviour of a group of objects, it is crucial that facts that can
be computed by the multivariate outlier detection algorithm can be shown immediately. The
reason for this is that the user’s decisions are mostly based on low dimensional features, while
the statistical routines consider the dimensionality of the data space.

Certainly also a dimension reduction technique can be applied to map the data items to a
two or three dimensional space, so that they can be visualized by scatterplots. This approach al-
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lows the fast visual detection of outlying objects, but therefore the dimension reduction process
must capture the most important information in the data, as outlined in section 4.3.2, where the
task of clustering was discussed. Especially because of the uncertainty that a dimension reduc-
tion approach captures the important information for the outlier detection task, an incorporation
of the information of the outlier identification algorithm into the dimension reduction should
be considered. In the scope of this work this was accomplished by using the robust covariance
matrix for the robust distance calculation, on which the outlier detection is based, and for the
principal component analysis, which is applied for the dimension reduction.

In contrast to the finding of data items with similar behaviour, outliers are in general a
heterogeneous group of objects. Thus detected outliers in a view showing a low dimensional
projection of the data items need not be located in a specific area, but should be positioned
at the border of data agglomerations. If this is not the case several issues have to be consid-
ered. The dimension reduction technique may not capture the necessary amount of information
to visualize the actual relations between the data items or the outlier detection algorithm may
not be suitable for the given data respectively its parameters are not correctly set. Especially
for such tasks it is important to interactively manipulate the parameters of the statistical al-
gorithms, which provide an immediate feedback, to efficiently determine the reason for such
discrepancies.

As in the field of statistics post visualizations have been developed to validate and in-
spect the results of the outlier detection algorithms, it is crucial to adapt those views in visual
data mining applications and enhance them by adding interaction techniques. The interactive
manipulation of the parameters of the algorithms is the first step that has to be accomplished.
Furthermore the user can be allowed to define fuzzy decision boundaries to incorporate uncer-
tainties in the classification process. Depending on which statistical routine is used to detect
outliers, this additional functionality can only influence the interface and the final storage of
the classification result or it also has to be considered in the computational back end of the ap-
plication. But also the drawing of selections and manual modifications of the outlier detection
result could be used to automatically evaluate more accurate parameter settings, which means
that the user’s interactions have to be translated into properties of the used statistical method. If
this handshake between the user’s input and the capabilities of the computational routines can
be achieved, the quality of outlier detections will be tremendously increased.



Chapter 5

Library for statistical Functionality for
Visualization

For the implementation of a library containing basic statistical functionality for information vi-
sualization applications routines have to be determined that can assist the visual data mining
process and moreover enable the combination of user interaction and computational tasks. Be-
cause there is a huge range of statistical methods the examination of open source as well as
commercial programs and the research in recent papers documenting the collaboration between
visualization and statistics helped to state five categories of statistical functionalities that apply
to this criterion.

Spotfire [10] [7], one of the leading commercial programs in the field of information
visualization, offers hierarchical clustering methods and the k means algorithm to partition a
dataset. Furthermore Self-organizing Maps and Principal Component Analysis can be applied
to reduce the dimensionality of the data. Statistical measures like the median, the arithmetic
mean, the variance as well as quartiles and so called outside values, describing whether a data
value is a one dimensional outlier, can be calculated for selected data items. Boxplots and QQ-
Plots for the comparison between the distribution of a sample and a theoretic distribution are
provided. Additionally decision trees [80] and methods for analysis of variance (ANOVA) [98]
enrich the functionality of Spotfire.

The statistical functionality of the commercial application Miner 3D [4] also concentrates
on the dimension reduction via PCA and on clustering using the k means algorithm. Addition-
ally a set of statistical moments can be evaluated to characterize the behaviour of selected data
items.

Likewise the open source project GGobi [112] [2] provides moments calculation for ob-
jects that are currently selected. As dimension reduction procedures the PCA and MDS can be
used. To reduce the number of data items to speed up further calculations or to allow clearer
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visualizations a subsampling algorithm can be applied. But GGobi is also popular because of
its possibility to apply a set of transformations on the data items. The user interface even al-
lows the definition of multiple transformation operations, which improves the data preparation
significantly.

The majority of the publications concerned with the combination of statistical routines
with interactive visualizations concentrates on the topics clustering and dimension reduction,
where especially the self-organizing maps were discussed. As outlined in section 2.3 the pro-
posed applications mainly concentrated on the use of statistical routines as starting point of a
visual data exploration.

In this section the chosen functionality that is incorporated in the statistics library is listed
and its usefulness is discussed. Afterwards the differences between the availability of statistical
routines for arbitrary applications and the implemented statistics library for information visual-
ization are explained by focussing on interaction possibilities that are necessary to effectively
combine both fields. Finally first approaches for semi-automatic sense making are explained,
where the information visualization uses statistical methods to filter concrete facts from the
data.

5.1 Components of the Library

Based on the outlined research concerning useful statistical routines for information visualiza-
tion techniques the functionality that is provided by the statistics library can be divided into five
categories. The first one is concerned with operations that are performed on each dimension of
the data separately. This concerns the preparation of the data for multidimensional operations
by applying transformations as well as analysing the properties of their distributions by calcu-
lating statistical moments. Transformations are included in the library because data preparation
is a crucial step for procedures like clustering or outlier detection. This is also the reason why
GGobi provides a very efficient user interface for applying such operations on data attributes.
In comparison to that statistical moments are standard computations, which are supported by
the main software products for visual data mining.

For the investigation of patterns between dimensions the calculation of correlation mea-
sures and the covariance matrix is realized in the statistics library. While correlation coefficients
can give a hint for the similarity and the coherence between attributes, the covariance matrix is
a crucial component of a variety of statistical applications. The probably most popular routine
using this functionality is the principal component analysis.

As group finding is one of the most important data mining tasks, the integration of clus-
tering procedures into the statistics library is a must. The clustering can be seen as the reduction
of data items by calculating cluster centers representing large numbers of data points. To de-
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crease the number of attributes of the data a dimension reduction can be applied, which captures
the main information of the data space in low dimensional subspace.

As the majority of statistical routines requires data showing a certain distribution pattern,
hypothesis testing has been implemented. Thus it can be inspected, if dimension values apply to
a given theoretic distribution. Additionally for each incorporated theoretic distribution random
values, distribution and density values as well as quantiles can be calculated. This functionality
is necessary to use those theoretic distributions to create interactive statistical analysis by means
of visualization.

Finally the multiple linear regression as a simple model that tries to explain the functional
relationship between p independent variables and one dependent attribute was implemented.
The reason for this is that regression is one of the basic approaches to predict the behaviour
of a variable. Thus it can be used to simplify and explain the coherence between a subset of
dimensions and another data attribute.

5.1.1 Transformations and Moments

Transformations can be used to map the values of a dimension into a given range or to change the
shape of the distribution of the attribute. For multivariate methods such as clustering the range
of dimension values is of high importance. If a clustering is based on a dimension x with values
between 0 and 1 and on dimension y with values between 0 and 1000 the clustering concentrates
on dimension y, because the high values of this dimension have a stronger influence on the
distance calculations that measure the dissimilarity between data items. To run a clustering,
where each dimension is treated equally, both dimensions have to be mapped on the same
domain. To achieve this a linear scaling to the [0, 1] interval is sufficient. Alternatively a
classic z standardization ((x − µ)/σ can be used, where µ represents the arithmetic mean and σ
represents the standard deviation.

But these two linear transformations do not consider outlying values. Already one ex-
treme value can make the result of those transformations unusable for further operations, be-
cause the extreme value is mapped on one end of the interval and the ”actual” data values are
projected to the opposite interval limit. Thus the main information stored in the values of the
attribute is lost and a multivariate routine only observes the categorical decision telling, if a
value is an outlier in the given dimension. To avoid these effects a robust z standardization
can be applied, where µ represents the median and σ represents the median of absolute devia-
tions (MAD). Alternatively the outlying values can be extracted by a one dimensional outlier
detection. Afterwards the ”actual” data values can be scaled by the non robust transformations
described above.
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Besides the linear mappings for changing the domain of the dimension values logarith-
mic and squareroot transformations are used to alter the distribution of the values. Statistical
routines often assume a certain theoretical distribution like the normal distribution. The non
linear transformations can help to convert the distribution of the given values so that it is similar
to an assumed theoretical distribution.

Moments are parameters that characterize a sample or the values of a dimension. They
can be divided into estimators of location, estimators of scatter, percentiles and higher moments.
Parameters of location are the arithmetic mean, the median and the α-trimmed mean. Because
of being influenced by even one outlying value, the arithmetic mean is often replaced by the
median, which is the most robust estimate of the center of a population. The disadvantage of
the median is that it is only based on at most two observations. Thus it is no efficient parameter
estimation that indicates the real location of the sample center for a rising number of data items
in contrast to the arithmetic mean. To deal with the trade-off between robustness and efficiency
the α-trimmed mean can be applied. By setting the parameter α the robustness is steered because
the α2 lowest and the α2 highest values are discarded. The remaining 1 − α values are considered
for the computation of the arithmetic mean. This approach allows the calculation of the center
by using a certain percentage of the data to maintain efficiency to a certain degree and rejects
outlying values.

Similar observations can be made for the moments of scatter. The variance and the stan-
dard deviation are classic estimates that are based on all given values. Thus they have a high
efficiency, but are not robust. They are also the most popular measures to characterize the
spread of the values of a sample around its center. The MAD representing the median of the
absolute deviations of the values from their median is the most robust estimate for the scatter.
The α-trimmed standard deviation allows the user to weigh the importance of robustness and
efficiency.

The α-percentile or the α-quantile is defined as the value that is higher or the same as
the α fraction of the sample values. Important quantiles are the so called first, second and third
quartile (ie. the 0.25-, 0.5- and 0.75-quantile). The second quartile is equal to the median.
The difference between the third and the first quartile is also known as the inter quartile range
(IQR), which can also be used as a robust measure of scatter. Assuming normal distribution the
standard deviation is equal to IQR

1.349 . The three quartiles are also used for drawing a boxplot [113],
which is a popular illustration for the distribution of a set of values.

Higher moments are the skewness and the kurtosis. They describe certain shapes or
properties of distributions. The skewness indicates a right-skewed distribution by values higher
than 0, meaning that the majority of values is higher than the center of the distribution. A
negative skewness characterizes a left-skewed distribution. The kurtosis measures the weights
of the tails of a distribution. Values higher than zero indicate that the given distribution has
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more values in the tails as the normal distribution. Negative values imply fewer values in the
tails and a sharper peak than the normal distribution.

5.1.2 Correlations and Covariances

In data analysis the detection of correlations between dimensions is of high importance, because
they indicate the linear or monotone functional coherence between the values of two attributes.
For the calculation of a correlation coefficient a classic method and two robust methods are im-
plemented in the statistics library. The classic correlation also known as the Pearson correlation
can be influenced by outliers and measures only the linear coherence between two variables.
The robust correlation coefficients according to Spearman and Kendall reduce the influence of
outlying values significantly [8]. They also detect non-linear correlation patterns that may be
created by logarithmic or exponential dependencies.

The calculation of correlations can also be used to detect similarities between dimensions.
The value of correlation coefficients is within the interval [−1, 1], where −1 indicates a complete
negative and 1 a complete positive correlation. A negative correlation means that the higher the
value of a data item in the first dimension is, the lower is its value in the second dimension,
while positive correlations imply the inverse. A perfect correlation is given if the drawing of the
data points in a scatterplot results in a straight line. A correlation of 0 implies two uncorrelated
dimensions [95].

Thus the correlation can be used to group dimensions. A group should contain attributes
which are significantly correlated to each other. This criterion is fulfilled if the absolute cor-
relation coefficients are near 1. To find those groups automatically a hierarchical clustering
approach can be used. Therefore each dimension is set as initial cluster. Afterwards the two
most similar clusters are merged iteratively until only one cluster holding all dimensions re-
mains. The most similar clusters are defined by those two clusters that have the highest ab-
solute correlation coefficient to each other. After the merge the correlation of the new cluster
to the remaining ones has to be renewed. This is accomplished by keeping the lowest absolute
correlation coefficient of a dimension that is part of the new cluster. That approach assures that
the clusters separate from each other and that no chaining effect appears. The hierarchical clus-
tering introduces a dendrogram structure that can be used to adjust the number of dimension
groups. Ideally the number of groups is chosen in a way, that the minimum correlation between
two attributes in a group exceeds a certain level.

But the correlation can also be applied to rank two dimensional scatterplot visualizations,
so that plots that show interesting patterns for the user are automatically detected. This approach
gains importance, if high dimensional datasets are analysed, where the number of possible scat-
terplot visualization does not allow a manual search for interesting combinations of attributes.
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The Rank-by-Feature framework [107], which is also discussed in 2.3.1, demonstrates the ef-
fectiveness of this procedure. While this framework uses the Pearson correlation besides other
non robust measures, the application of Spearman and Kendall correlation coefficients would
also detect views that contain linear patterns, which are masked by outliers, as well as other
monotonic functional coherences.

A different measurement for the relation between dimensions is provided by the covari-
ance matrix that holds the variances of the dimensions in the main diagonal and the covariances
between the attributes in the off-diagonal entries. Thus it is a symmetric matrix, that describes
a p dimensional dataset as a hyperellipsoid approximating the shape of the data in the p di-
mensional space. This interpretation makes the covariance matrix important for multivariate
methods such as dimension reduction or for examining the relation between dimension groups.
In the library the Principal Component Analysis (PCA) and the calculation of the Mahalanobis
distance build up on the computation of the covariance matrix. The PCA uses the covariance
matrix to find the directions with the highest variance in the data. An elaborate discussion of
the use of the PCA can be found in section 5.1.3. The Mahalanobis distance considers the dis-
tribution of the data for its distance values by projecting the data items to a space where each
dimension has variance 1 and all covariances are 0. This is achieved by the inverse covariance
matrix.

The classic estimation of the covariance matrix is based on all data items and thus can
be influenced by multidimensional outliers that distort the hyperellipsoidal shape described by
the covariance matrix. Hence a robust estimate of the covariance matrix according to the fast
estimation of the Minimum Covariance Determinant (MCD) algorithm [101] was implemented.
Because the calculation of the covariance matrix is based on a subset of data items representing
the majority of the data, groups of outlying data points do not affect the variance and covariance
estimations. This robust covariance matrix can be used for a robust PCA or the calculation of the
robust distance. Thus the robust PCA calculates independent from outlying values the direction
with the maximum variances and hence can be used to project the data items on the principal
components, which visualize the outlying values separated from the intrinsic data.

The use of a robust covariance matrix for the Mahalanobis distance yields in the calcu-
lation of the so called robust distance, where p dimensional outliers have high distance values.
This allows the outlier detection in the multidimensional space. Assumption for the correctness
of this approach is that the data has an approximately p dimensional elliptic distribution. To
assure this condition, transformations could be applied on the dimensions.
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5.1.3 Clustering and Dimension Reduction

Cluster operations try to partition the dataset into groups. This is used to detect trends, meaning
that clusters characterize a big amount of data items with the same properties. Thus the cluster
centers can be viewed as representatives for data points, so that their values and characteristics
can be interpreted more easily.

Besides its usefulness concerning interpretation and simplification of complex datasets a
clustering can also serve as filter for noise in the data. To fulfil this functionality a large amount
(eg. N/500) of cluster centers is defined. These centers represent only a view hundreds of data
items after the clustering procedure. But they can be used as abstraction of the data. This ab-
straction was not introduced for partitioning reasons but for the elimination of tiny disturbances,
that may be introduced by errors of measurement or that lies in the nature of the data itself. That
approach can also be seen as a reduction of the data points for visualization issues or to fasten
future computations. A prominent example, where cluster information is used to replace the
illustration of each data item, is the hierarchical parallel coordinates [41] approach.

The most popular clustering algorithm is the k means clustering, that is also provided
by the statistics library, because of its simple concept and its status as THE standard cluster
approach in data mining applications. k means clustering is an optimization procedure that
minimizes the sum of distances of the data items to their cluster center, by starting with ran-
domly chosen initial centers. Thus different initializations reach other local minima of this
energy function. Consequently it is recommended to start several clusterings and choose the
best result measured by the lowest energy function value as final solution. But this approach
can not be applied on large datasets because of too high computational efforts to allow an inter-
active cooperation between the clustering and visualization. For this reason the statistics library
provides the possibility to find a better initial center setting by running several k means cluster-
ings on a small subset of the data. The centers of the best solution are taken as initial centers
for the clustering on the whole dataset.

For the calculation of the new updated cluster centers traditionally the arithmetic mean
of the data items of each cluster is used. Alternatively the median per dimension can be applied
to evaluate the new centers. This has the advantage that outlying data items can not attract the
centers. But because the componentwise median is no convex combination of the data items of a
cluster, it is not guaranteed, that the evaluated centers lie in the convex hull of their data points.
This is shown by the example described in table 5.1. The data items span a triangle in three
dimensional space that is not passing through the origin of the coordinate system. Nevertheless
the multidimensional median computed from those data points is located at this origin.

Furthermore the distance calculations can be made by using the Euclidean distance or the
Manhattan distance. Another option is the setting of weights for the used dimensions to steer
their influence on the clustering. This allows the user to differentiate between very important,
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Dimensions x y z
Item 1 1 0 0
Item 2 0 1 0
Item 3 0 0 1
Median 0 0 0

Table 5.1: An example showing that a median per dimension has not to lie within the convex
hull of its data items.

helpful and not necessary attributes for the clustering. The weights can be set arbitrarily between
0 and 1, where 1 indicates the maximum possible influence.

Additionally to the hard clustering with k means the statistics library provides the fuzzy
k means clustering, where a data item is assigned to each cluster with a certain percentage. The
usage of a fuzzy clustering has the advantage that grey area - realms where data items can not
be assigned to one cluster exclusively - are detected. Thus an adequat visualization can help
to assess, if the number of clusters was chosen correctly or if the data can be grouped easily.
A high number of and/or large grey areas can indicate that a too small number of clusters was
set or that the clustered data appears to be a connected point cloud, where a partitioning is
introduced highhandedly. A further advantage of the fuzzyness is that the user is not tempted
to take the assignment of data items as given fact, especially if a data item is situated far away
from its cluster center. The memberships of the data items thus also indicate the certainty of the
affiliation of data points to their clusters. For a hard clustering this fact can be expressed by the
distances of the data items to their cluster centers, but there is no indication to which cluster the
data item can be assigned alternatively unless the distances to all centers for each data item are
kept.

Also for the fuzzy clustering a precalculation of the cluster centers is possible by per-
forming a hard k means clustering on a small subset. It is also possible to set weights for the
dimensions and to decide, whether the distance calculation should be accomplished with the
Euclidean or the Manhattan distance. Because of the more complex calculation of the cluster
centers no option is provided, where the user can change the center calculation scheme.

While the clustering calculates a small number of representatives for tens or hundreds
of thousands data items, the dimension reduction tries to depict the information represented in
the p dimensional dataset with a few attributes. For the visualization the number of attributes
is commonly bounded by two or three. The statistics library therefore provides the Principal
Component Analysis (PCA), which computes directions where the highest variance in the point
cloud representing the dataset is detected. These directions that are linear combination of the
original dimensions are called principal components. The first principal component represents
the direction with the highest variance, while the orthogonal second principal component is
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the channel with second highest variance. This fact makes it possible that the majority of the
information of the data is represented by a few principal components, while the rest only de-
scribes details. Thus the principal component analysis can be used to project the data into a low
dimensional space, where the main information is represented. The number of dimensions of
this space can be interactively chosen by plotting the explained variance of the first m principal
components. Usually this graph shows a sharp drop of the additionally explained variance by
adding the i-th principal component. Accordingly i−1 principal components are recommended
to use for the dimension reduction.

Because the calculation of the principal components is based on the covariance matrix of
the data, the statistics library provides besides the classic PCA also a robust version. For the
latter a robust estimate of the covariance matrix is used. This allows the calculation of directions
that are not influenced by outlying values. A projection using the robust principal components
can help to identify groups of data items that highly distinguish from the majority of the data.

5.1.4 Distributions and statistical Tests

Theoretic distributions are used to test if a set of data values applies to a given distribution.
The normal distribution as well as the uniform and the exponential distribution are of high
importance for this task, because they are distributions that describe shapes that are common
for samples. To check if the values of a dimension come from a given theoretic distribution, the
statistics library provides test routines. The user can apply a significance level and thus decide
how conservative the test result should be. The null hypothesis states that the given data values
are from the theoretic distribution, for which they are tested. If the calculated p-value is higher
than the user defined significance level, that has a standard setting of 0.05, the null hypothesis
is kept.

These tests are important, to decide, whether a statistical routine that assumes the data
to have a certain distribution can be applied. As described in 5.1.2 the calculation of the ro-
bust distance assumes an elliptical p dimensional distribution. Thus the tests could be used to
investigate, whether the values of each dimension apply to a normal distribution. But also as
a ranking criterion to automatically find attributes of special interest, tests can be applied that
indicate to which extend the attributes apply to a given theoretic distribution. The significance
values could be used as a ranking criterion, which may be the first step for a feature subset
selection approach.

Furthermore the statistics library provides a test to examine, if the values of two samples
come from the same distribution. This test is useful to analyze pairs of dimensions. If two data
attributes have the same distribution, this might indicate correlations or dependencies that can
be validated by calculating a correlation coefficient or fitting a regression model.
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Theoretic distributions can also help to visualize, whether a sample or the values of a
dimension are distributed accordingly. Therefore a two dimensional scatterplot is used, where
the quantiles of the theoretic distribution are plotted on the x axis and the ascendingly ordered
data values of a dimension are mapped on the y axis. Now a straight line is fitted through data
points representing the first and the third quartile. If the data points nearly lie on a straight line,
the data values come from a set having the shape of the given theoretic distribution.

Besides the theoretic distributions used for the tests of samples, the chi-squared distri-
bution is provided. The quantiles of this distribution can be used as decision boundary for a
multidimensional outlier detection. Because the robust distances of a p dimensional dataset
are assumed to come from a chi-squared distribution with p degrees of freedom. Consequently
the 0.975 quantile of this chi-squared distribution identifies a limit, which would detect 2.5 %
of the data part of the p dimensional elliptic distribution as outlying data points. By setting
the percentage defining how many outliers are expected, an outlier detection application can be
interactively steered.

5.1.5 Linear Regression

The multiple linear regression is a procedure, that tries to predict the value of an attribute de-
pending on the values of q independent variables. The function used for the prediction is linear
in the independent variables. The advantages of this approach are that the dependencies of the
predicted variable are stated by the created function and the simple model allows a fast and
intuitive interpretation of the influence of the independent variables. Because of the restriction
to allow only linear terms the regression can be computed very fast also for a large amount of
data. For visualization issues the linearity introduces a q dimensional plane that can be easily
incorporated in scatterplot or parallel coordinate views. The main disadvantage of the linear
regression is that the model can not capture functions with higher order terms, which can yield
to wrong results, if there are coherences between the variables that are of high complexity.
The second issue is that already one outlying value can strongly influence the model and thus
produces a significant deviation from the correct result, which would be achieved without the
outlier.
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5.2 Hooks of Interaction

To integrate statistical routines in interactive information visualization the statistics library
needs to allow interactive recalculations and fast updates of the results of statistical methods.
To realize this close cooperation additional parameters have to be passed to the routines or even
new methods have to be provided. These additional extensions of the interface are the so called
hooks of interaction.

In information visualization applications the use of selections is a basic functionality for
highlighting certain data items to interactively explore the dataset. Those selections can be
modified, deleted or combined with other selections by using logical operations like AND, OR
respectively NOT. Because the calculations of a statistical routine can be based on selected data
items, additionally to the parameters of the routine itself the subset of the data points to use
must be indicated. Therefore methods of the statistics library have a degree of interest (DOI)
parameter. This parameter holds a flag for each data item, indicating if it is selected by the user.
If a statistical routine allows the specification of a smooth selection, where graduations between
selected and not selected are possible, the DOI parameter holds a value between 0 and 1 for
each data item, where 1 indicates a full selection.

Further important aspects in the field of information visualization are focus and context
concepts, where details of the data can be examined while the connection to the overview of
the data is kept. Therefore the statistics library can be used to provide on the fly statistics for
the data, on which the user focuses. Furthermore overall estimates would allow a comparison
between the data items of interest and the main behaviour in the data and thus gives a hint of
the placement of those objects in the dataset. Parameters for location and spread are especially
adequate for this approach. But also correlation or covariance patterns could be considered.
Applications that realize this statistical feedback concept can use the corresponding calculations
by passing a DOI parameter defining the subset of data items, on which the user focuses.

Besides the general interaction parameters new possibilities for the communication with
statistical routines can be introduced. Methods like the clustering can be adapted in a way that
the visualization becomes an interactive user interface steering the parameters of the clustering
algorithm. For example the representation of cluster centers in information visualization views
can be used to apply merge, division or deletion operations on the clusters. Also a subclustering
algorithm can be started for partitioning the selected cluster. The cluster centers could be moved
and used as initial centers for a new clustering. Each of these operations has its own method
in the library, which translates the applied modification into new parameter settings for a clus-
tering algorithm, which is executed afterwards. Because the interactive collaboration between
statistical functionality and visual representations is not well established yet, such operations
have to be introduced for each algorithm separately. The statistics library is prepared to intro-
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duce an intermediate layer for each provided routine that allows the translation of interaction
operations into settings for an algorithm.

5.3 Concepts for semi-automatic Sense Making

In this section useful visualization applications based on statistical routines are introduced that
allow both fields to contribute to an efficient data mining workflow. The outlined tools have
been implemented and a case study, where their work is demonstrated, is discussed in section 6.

5.3.1 Transformations

As the aim of transformations is to apply a function on the data so that their value range applies
to a certain range or their structure is similar to a theoretic distribution, a simple visualization in
a scatterplot creates a visual control system. As illustrated in figure 5.1 the quantiles of a given
theoretic distribution and the ascending ordered transformed dimension values are mapped on
the two axis of a two dimensional scatterplot. Additionally a line is drawn that passes through
data items that represent the first and the third quartiles of both samples. If the data items are
depicted nearby the line, the transformation was successful and the data values apply to the
given theoretic distribution. If there are deviations, different transformations have to be applied.

For this application the user can specify per dimension the squareroot, logarithmic, stan-
dardization and unit interval transformations. As theoretic distributions the uniform and the
normal distribution are supported. This tool should be considered before a multidimensional
operation like clustering or dimension reduction is applied, because it allows the preparation of
the data to the needs of statistical routines.

5.3.2 Outlier Detection

As multivariate outlier detection the MCD algorithm for the robust covariance matrix estimation
is applied. Based on this outlier resistant description of the shape of the data, the robust distance
is calculated to provide a degree of outlyingness for each data item. The result of this approach
is depicted by scatterplots illustrating the first and the second principal components computed
from the robust covariance matrix estimation. To data items that are detected as outliers a
colour is assigned. Alternatively those data points can be highlighted, that are used to calculate
the robust covariance matrix. This approach provides a visual feedback of the quality of the
multivariate outlier detection. If outliers are mainly detected at the border of the depicted point
cloud, then it can be assumed that the algorithm was successful. An alternative indication for
this issue is, if the data items, on which the MCD covariance matrix is based, agglomerate
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Figure 5.1: Two screenshots of the transformation tool showing a normal distributed attribute
compared to the theoretic normal distribution (a) and to the theoretic uniform distribution (b).
No transformation has yet been applied to the shown variable.

near the center of the illustrated data. Certainly this observation can only be made, if the used
principal components explain the majority of variance in the data.

To illustrate the calculated outlyingness an additional scattplot showing the Mahalanobis
distances versus the robust distances has been realized. This visualization is shown in figure 5.2
and incorporates the decision boundaries that classify data points into outliers and non-outliers
by a horizontal line for the robust measures that are mapped on the y axis and by a vertical
line for the Mahalanobis distances. These lines divide the visualization space into 4 areas.
The lower left area contains only those data items showing low robust and low Mahalanobis
distances. Thus they are identified as the actual data. The lower right area contains data points
with high Mahalanobis distances. Consequently using the classic distance measure they would
have been classified as outliers, but the robust distance reveals, that those objects are non-
outliers. In general this area is empty as the robust distance that is not influenced by outliers
shows higher distance values. The upper left area contains masked outliers, because they are
only detected by the robust distance, while the upper right quadrant shows data items with high
deviations from the robust as well as from the classic center of data. Additionally the identity
line is drawn. If the data items are illustrated nearly along this line, then the data comes from
multivariate normal distribution.

The user can now steer the number of the p dimensional data items that are detected
as outliers, by a slider holding the quantile of the chi-squared distribution with p degrees of
freedom. If the data is multivariate normal distributed, the robust as well as the Mahalanobis
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Figure 5.2: A screenshot of the interactive outlier detection tool showing the selected attributes
and buttons for the invocation of storing and rerun operations as well as the outlier decision
view in the center and the highlighted outliers shown in a scatterplot on the right presenting the
first two robust principal components of the dataset.

distances come from this chi-squared distribution. Thus if a quantile of 97.5 % is set, 2.5 % of
data would be marked as outliers. Because of the fact that data does not apply to this multi-
variate normal distribution, deviations from this theoretic values occur. Consequently the user
is encouraged to interactively specify the correct chi-squared quantile in the user interface. The
visualizations give immediate feedback and help to find the best setting.

5.3.3 Interactive Dimension Reduction

The approach for the interactive dimension reduction that is proposed in this work is strongly
related to Visual Hierarchical Dimension Reduction (VHDR) [121] and can thus also be seen as
an interactive feature subset selection procedure. Nevertheless differences between those two
applications exist and will also be discussed shortly in this section.

A hierarchical clustering algorithm for grouping the attributes of the data is applied after
starting the interactive dimension reduction tool. As similarity measure the absolute correlation
value between pairs of dimensions is used. Thus the maximum similarity value is 1, while dis-
similar variables are decorrelated and show values near 0. To compare clusters the minimum
absolute correlation between pairs of dimensions in the cluster are considered. Thus the hierar-
chical clustering applies the complete link metric. In comparison to that VHDR uses a different
similarity measure that counts the number of data items that have similar values in the compared
attributes.
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Figure 5.3: A screenshot from the interactive dimension reduction tool showing the illustration
of the dendrogram structure in the upper left corner and a parallel coordinates visualization of
the selected dimension group in the center of the window.

While VHDR allows an interactive exploration and manipulation of the established di-
mension hierarchy with the InterRing [122] visualization tool, in this work a simple dendrogram
structure is visualized. It allows collapsing and expanding operations for the dimension clus-
ters. Additionally if a cluster is selected, the variables of this group are visualized in a parallel
coordinate plot as depicted in figure 5.3. This rather simple exploration approach should help
the user to select dimensions for further processing steps. No limitations are given for the user,
so that any subset of dimensions, independent from the introduced attribute grouping, can be
selected. VHDR restricts the user to choose clusters and proposes representative dimensions
for the chosen clusters. Certainly this constraint is softened by the fact that the user is able to
manipulate the clustering result and the selection of the representative dimensions.

Additionally the interactive dimension reduction allows the user to pick the principal
components of a cluster, which is not supported by VHDR, which uses the dimension subset
only for visualization issues. Although the selection of a principal component implies a more
complex interpretation of the dimension reduction, it may be helpful for statistical approaches
like clustering.
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5.3.4 Interactive Clustering

The very popular k means clustering algorithm is used to enhance a group finding heuristic with
interaction possibilities in an information visualization view. The clustering result is visualized
by a scatterplot depicting the data items projected on the first two principal components. Fur-
thermore a scatterplot and a parallel coordinates view can be opened to explore the original data.
The data items are coloured according to the partitions introduced by the k means procedure.
Additionally the cluster centers are accentuated in the scatterplots. This is shown in figure 5.4.

Figure 5.4: A screenshot of the interactive clustering interface showing sections for the dimen-
sion weights, for the k means properties and the possibilities for interactive clustering as well as
for the visualization of the cluster result. The latter is accomplished by a scatterplot presenting
the first and second principal component of the clustered data.

To overcome the drawback of k means to specify the number of used clusters in advance,
the achieved clustering result can be examined and clusters can be subclustered or splitted into
two regions, if they cover several groups. Because the clustering in general calculates a local
optimum of its energy function, cluster centers can be repositioned and a reclustering can be
initiated to test, if a better result can be achieved by a different initial center setting.

These interaction techniques can help the user to explore the importance of certain di-
mensions for the clustering and the stability of cluster solutions. If a dimension is found that
has major influence on the grouping heuristic, the weight of this attribute can be decreased,
so that the distance calculations do no longer depend to this extreme extend on this variable.
The concept of dimension weights certainly can also be used to set the degree of interest per
variable.
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5.3.5 Group Fingerprints

As final application a visual analysis of the created groups (outliers and clusters) can be made.
Therefore a simple bar diagram has been implemented. For each dimension the relative differ-
ence between the mean vector of the group and the center of the whole dataset is shown. This
tool provides a numerical as well as a visual identification of a cluster or an outlier group by
summarizing its main characteristics. An example of this visualization is shown in figure 5.5,
where the center of the group shows significantly higher values in the variables X1 and X2 in
comparison to the mean of the whole dataset. In the attribute X3 members of the group seem to
have low values compared to the remainder of the data, while the dimension X4 can not be used
to characterize the group because of the small difference between the two compared centers.

Figure 5.5: An example of the group fingerprint visualization for a cluster in a four dimensional
dataset.



Chapter 6

Proof of Concept Cases

This section discusses two proof of concept cases that demonstrate the effectiveness of the
interactive combination of statistical routines and information visualization techniques. For this
purpose the concepts for semi-automatic sense making discussed in section 5.3 are realized.
Based on the computational algorithms of the statistics library an application was implemented
that applies basic visualization techniques like 2D scatterplots and parallel coordinate views.
To make a fast drawing of the graphics possible, OpenGL [105] was applied . It was not in
the scope of this work to explore possible improvements of information visualization views by
enhancing the presentation of the data items by the results of statistical routines. Thus no efforts
to reduce cluttering or to enhance the perception of outliers were made. Instead fundamental
visualization approaches were used as validation tool and most important as interface for the
user to modify and adapt the results of the statistical algorithms. To achieve this also a graphical
user interface based on the GTK+ [3] library was created.

Furthermore these examples show that it is essential to provide a variable workflow that
can be easily adapted to the user’s needs. As the realized application covers with tools for
transformation, dimension reduction, outlier detection, clustering and visual group analysis five
fundamental tasks for the visual data mining process, the sequence in which they are applied
is not fixed. One essential reason for this is that transformations should be applied before each
multivariate statistical routine like clustering or outlier detection. But also for the realization
of a information drill down process an outlier detection can be executed before a group finding
process, to avoid distortions by outlying values, and certainly also after the partitions have been
created to accomplish further analysis of single clusters. As this list of meaningful orders of data
mining tasks could be carried on, the demonstration application allows executing each step at
an arbitrary position in the workflow, whereby it can be based on the results of its predecessors.
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6.1 Letter Recognition

In the first proof of concept case the letter image recognition data [39] containing 20000 ob-
servations and 16 numeric variables is used, which describe the properties of letters given as
black-and-white images. To make the demonstration of an interactive clustering application
possible, only the letters A, B, C, D, E and F are considered which reduces the number of data
items to 4640. For the analysis all numeric attributes were used except the horizontal and ver-
tical position of the bounding box of the letters that do not contain information to discriminate
the letter types. The remaining attributes of the dataset, which were considered for this example
data mining process, are stated and explained in table 6.1. As the dataset is based on the dis-
cretization of the letters by a pixel raster, these measurements show integer values and are not
continuous.

Attribute ID Abreviation Explanation
0. width The width of the bounding box of the letter
1. high The height of the bounding box of the letter
2. onpix The number of pixels set to on.
3. x.bar The mean of the x coordinates of the on pixels.
4. y.bar The mean of the y coordinates of the on pixels.
5. x2bar The variance of the x coordinates of the on pixels.
6. y2bar The variance of the y coordinates of the on pixels.
7. xybar The correlation between x and y coordinates of the on pixels.
8. x2ybr The mean of x2 ∗ y.
9. xy2br The mean of x ∗ y2.

10. x.ege The mean of the vertical edge pixels.
11. xegvy The correlation between x.ege and y
12. y.ege The mean of the horizontal edge pixels.
13. yegvx The correlation between y.ege and x

Table 6.1: The attributes of the letter image recognition data used for the data mining process.

For the analysis of the dataset in a first step the interactive dimension reduction is applied
to exclude attributes, whose information is well represented by others, and to investigate the
relationships between the variables. Afterwards an interactive clustering process is initiated,
where a k means approach partitions the data. The user can modify the introduced division of
the data items by repositioning the cluster centers and by reassigning the objects to the cluster
with the nearest center. Finally a visual analysis of the created groups is performed.
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6.1.1 Interactive Dimension Reduction

For the dimension reduction process the values of the attributes were mapped to the unit interval.
This is in general not necessary for the hierarchical clustering, which is based on the correlation
information, but if dimension groups are summarized by principal components, equal value
ranges of the variables are crucial. The correlation measures do not depend on different scales of
the attributes, because the robust estimates take only the ranks of the data values in account, and
the classic Pearson correlation normalizes the covariance calculations by the standard deviations
of the variables.

The interactive dimension reduction tool starts with a hierarchical clustering of the di-
mensions. As similarity measure the Pearson correlation is considered. The resulting dendro-
gram structure is depicted in figure 6.1, where the IDs of the attributes according to table 6.1
are shown. The user can collapse and expand each node of the dendrogram to navigate through
the tree structure. By selecting a dimension group a parallel coordinate view is shown, which
illustrates the corresponding attributes in the order they are listed in the node name. For the
selection of a single attribute no visualization is defined, because this tool aims to analyse the
relationships between variables.

The use of parallel coordinates allows an efficient visual detection of similar variables.
Hence it is crucial to place dimensions, which are highly correlated, near to each other. This is
accomplished by using the ordering introduced by the clustering procedure. Negative correla-
tions patterns, which are apparent in parallel coordinates by a large number of line crossings,
disturb this efficient pattern recognition by causing additional cluttering. Thus it is essential,
that the user can flip axis, so that a positive correlation is visually established. Consequently
highly correlated dimensions show parallel lines for the majority of the data items and can be
easily recognized. Also an easier pattern recognition is accomplished by the dimension order-
ing, which can be seen in figure 6.2, where the dataset is shown by using the occurrence of the
attributes in the dataset as ordering, and by using the dimension ordering created by the clus-
tering. Additionally the attributes x.bar and xybar have been flipped, which is obvious, if the
minima and maxima of the dimension values are examined.

For the interactive detection of attributes that can be omitted for further tasks, a top-down
and a bottom-up approach can be considered. The latter starts by scrutinizing each dimension
pair in the dendrogram to decide, whether both variables represent the same information. If this
is the case the user can exclude for example the attribute showing the smaller value range from
further observations and propagates the result of this examination up to the next hierarchy. If
both dimensions show different patterns, no exclusion can be applied. Certainly this approach
is the most accurate procedure, but it is unsuitable for datasets with more than 20 dimensions.
In contrast to that the top-down approach recommends the selection of a level in the dendro-
gram structure, which also means that a certain number of attribute groups is considered. Now
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Figure 6.1: The dendrogram structure created by the hierarchical clustering of the attributes of
the letter image recognition data based on the Pearson correlation.

each group is investigated according to similarities. As the clustering introduced a dimension
ordering, the user can expect that the most similar attributes are placed near to each other, which
allows an efficient detection of variable groups representing the same patterns.

For this proof of concept case the top-down approach is chosen, for which four dimension
clusters are considered, which are illustrated in figure 6.3.

The first group holds only the dimensions x2bar and y2bar. As they do not show a
visual pattern, which indicates high correlation, both have to be considered. This conclusion is
underpinned by the correlation value of 0.47 and the comparatively low explained variance of
73.7 % achieved by the first principal component calculated from these dimensions.

In the second group the attributes y.bar and x2ybr show the highest correlation value of
0.78. The first principal component computed from this dimension pair can explain 89.6 % of
their variance. Consequently one of these dimensions can be excluded. As the attribute y.bar
shows a higher value range it is chosen to represent both variables. Additionally the numerical
information and the visual pattern between x.bar and y.bar indicate a strong dependency be-
tween them. Consequently also the variable x.bar can be represented by y.bar. In contrast to
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Figure 6.2: A comparison between the illustration of the letter image recognition data according
to the attribute order in the dataset (a) and according to the dimension ordering introduced by
the clustering (b).
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Figure 6.3: The four dimension groups that are examined for this proof of concept case are
depicted in parallel coordinates.
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that xegvy seems to have the highest dissimilarity patterns to the other attributes, so that it has
to be kept for further tasks.

In the third group an analogous situation is given. While the attribute width can be
considered as representative for high and onpix, the variable x.ege captures different patterns.
In contrast to that the fourth group shows the highest dissimilarity values, so that no attribute
can be excluded.

As a final result of this dimension reduction for the four attributes high, x.bar, x2ybr4
and x.ege representatives could be detected. The remaining 10 dimensions were kept to avoid a
considerable information reduction.

6.1.2 Interactive Clustering

For the clustering it is a necessity to provide dimensions with the same value range to avoid,
that single attributes have stronger influence on the group finding process. As no principal
component analysis was applied in the interactive dimension reduction, all used dimensions
values are already mapped to the unit interval.

The interactive clustering application starts with an initial k means clustering algorithm,
which provides a starting point for the group finding process. The result of this clustering
step can be investigated in the parallel coordinates and a 2D scatterplot illustrating the objects
projected on the first two principal components is available. Both views show the cluster centers
and the data items coloured according to their cluster memberships. The result of the initial
clustering can be seen in figure 6.4.

The scatterplot shows that the data reveals three major groups. Two of them are covered
by the red and the green cluster. The major group is divided by the remaining clusters. That
this grouping, which is shown by the projections on the principal components, is that significant
in the data itself, can be doubted, because the first principal component explains 25 % of the
variance in the data and the second principal component describes 22 % of the overal scatter.

The parallel coordinates visually recommend that for example the center of the blue
cluster should have a higher value in the dimension x.bar and lower values for the attributes
y.bar and y2bar. Consequently manipulations of the clustering result can aim to adapt the
positions of the cluster centers to the perceived cluster agglomerations in the parallel coordinates
and to introduce a better division of the shown data cloud in the scatterplot visualization. (As
this application does not pay attention to the plotting order and cluttering of data items in the
parallel coordinates, some patterns can be misleading. Therefore a plot of single clusters against
all data items could avoid drawing wrong conclusions concerning the optimum coordinates of
the cluster centers.)
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Figure 6.4: Initial k means clustering result visualized in parallel coordinates (a) and a 2D
scatterplots showing the first and second principal components (b).

To achieve this, the user can now interactively modify the clustering result by reposition-
ing the centers in the scatterplot view. As this visualization represents the cluster centers as
two dimensional projections from the 10 dimensional dataspace, the repositioning actions are
mapped back in the coordinate system of the dataset and thus represent multivariate manipula-
tions of the clustering result. Because the scatterplot is linked with the parallel coordinates, the
impact of a repositioning on the single attributes can be observed, which allows an investigation
of the functional relationships between the principal components and the original data variables.
After the center positions have been adapted, the data items can be assigned to the cluster with
the nearest center. The results of this operations are illustrated in figure 6.5.

Here it can be observed, that the reassignment process creates a 2D Voronoi diagram
like cluster shape in the scatterplot view. In the scatterplot the centers are now positioned at
visual agglomerations within the data cloud (red, green, yellow and cyan cluster) or at extreme
positions at the border of it (magenta and blue cluster). The latter positions were introduced to
create a clearer division of the main group of the data. In comparison to the initial clustering
also the matching of the centers with their data items in the parallel coordinates view could be
improved. This can be observed for the blue cluster. Certainly because of the manipulation
of the centers in the projected PCA space, it is not possible to set individual dimension val-
ues for the center, which would have been essential for the magenta cluster in the dimensions
x.ege or y.ege. Thus also the parallel coordinates view should provide interactive manipulation
possibilities.
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Figure 6.5: The repositioned cluster centers and reassigned data items visualized in parallel
coordinates (a) and a 2D scatterplots showing the first and second principal components (b).

Figure 6.6: The result of the reclustering based on the repositioned cluster centers visualized in
parallel coordinates (a) and a 2D scatterplots showing the first and second principal components
(b).

Afterwards a reclustering that started with the repositioned cluster centers was initiated.
Figure 6.6 shows that this cluster result reveals in the scatterplot, that there are actually four
groups in the data. The first three are now covered by the red, green and yellow cluster. The
remaining three clusters separate the biggest agglomeration more clearly.

As this dataset also provides the information for each data item, which letter is described,
a comparison can be made, if the clustering achieves correct results. An analysis shows that the
result of the reclustering is superior to that of the initial clustering. The classification rate for
four letters could be significantly improved. For example the green cluster represents 76.6 % of
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the objects of letter F after the reclustering, while in the starting solution only 71.4 % were rep-
resented. The red and the yellow cluster show a deterioration. Consequently further interactive
steps to improve the clustering respectively to adapt the k means results to the structure of the
data can be made.

6.1.3 Visual Group Analysis

As a final application for the first proof of concept case a visual group analysis is presented,
which creates for each group a visualization that represents a unique ”cluster fingerprint”. Thus
it enables the user to capture the main characteristics of a cluster immediately. Furthermore
the differences between the groups and a comparison to the whole dataset can be examined
efficiently.

This is accomplished by comparing the cluster center to the mean vector of the whole
dataset. The relative differences for each dimension are drawn as bars. The cluster fingerprints
for the final clustering result are shown in figure 6.7.

The bar diagrams show with high bars significant differences to the majority of the data.
For example the red cluster (figure 6.7 (a)) tremendously deviates from the main behaviour in
the dimensions y2bar, xy2br and x.ege, while the magenta cluster (figure 6.7 (e)) has significant
differences in the attributes x.ege and y.ege. In contrast to that the cyan cluster (figure 6.7 (f))
achieves the best match of the average behaviour of the dataset.

In the presence of correlated variables also these functional dependencies could be de-
tected, if different groups show similar patterns in those attributes. But as these related dimen-
sions have been excluded in the interactive dimension reduction process, this issue can not be
shown in this example.
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Figure 6.7: Cluster fingerprint visualization: (a) red cluster, (b) green cluster, (c) blue cluster,
(d) yellow cluster, (e) magenta cluster, (f) cyan cluster
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6.2 Average Wind Speed

The second proof of concept case is based on the average wind speed data [52], which describes
the daily arithmetic mean of the wind speeds in knots measured at 12 meteorological stations in
the Republic of Ireland. The dataset contains measurements from the years 1961 to 1978 and
thus 6574 data items. In table 6.2 the locations of the meteorological stations are stated.

Abreviation Average Wind Speed measured in knots at ...
RPT Roche’s Point
VAL Valentia
ROS Rosslare
KIL Kilkenney
S HA Shannon
BIR Birr

DUB Dublin
CLA Claremorris
MUL Mullingar
CLO Clones
BEL Belmullet
MAL Mull Head

Table 6.2: The attributes of the average wind speed data used for the data mining process.

For the analysis of this dataset an interactive outlier detection is performed to identify
extreme data objects, which possibly represent calm or windy days as well as data items that
represent atypical wind patterns between the different measuring stations. As this group of out-
liers can be heterogeneous, a clustering is performed on those items, to investigate, if they show
major patterns. Also on the remaining data items a clustering is applied to identify common re-
lationships between the stations. But to accomplish these tasks the attributes must fulfil certain
constraints, as the outlier detection requires an elliptic multivariate distribution. Thus this proof
of concept case starts with a data transformation.

6.2.1 Data Transformation

As this example application uses a distribution based outlier detection, it is crucial to provide
also tools that allow non linear mappings of dimension values so that their distribution can be
adapted. For this purpose squareroot and logarithmic transformations are made available. But
for the immediate validation, whether the dimension values apply to a given theoretic distrib-
ution, also a visualization technique is provided. This is achieved by a scatterplot visualizing
the quantiles of the distribution of interest versus the ascending sorted (transformed) dimension
values. Additionally a line is drawn through data points representing the first and the third quar-
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tile of both value sets. If the drawn data points are arranged along the line, the distributions
match, and the transformation can be applied to map the original dimension values to a set of
values that show the theoretic distribution that a statistical routine expects.

In the context of this proof of concept example the dimension values should be mapped
on a normal distribution, so that the multivariate dataset approximately shows an elliptic dis-
tribution pattern. As all dimensions seem to have a similar empirical distribution function, the
squareroot transformation showed the best results. Representative for all attributes the possi-
ble mappings and the corresponding visualizations for the variable RPT is shown in figure 6.8.
While the original data values as well as the logarithmic transformed values show significant
deviations from the green line, these options could not be used. In contrast to this the squareroot
transformation maps most of the data items on the guiding line. Exceptions appear in the tails
of the distribution.

6.2.2 Interactive Outlier Detection

After the data preparation the interactive outlier detection tool can be started. This application
calculates the robust covariance matrix according to the Fast-MCD algorithm. Consequently a
subset of at least 50 % of the data items is searched, which allows the computation of the covari-
ance matrix with the lowest determinant. Afterwards based on this estimate the robust distances
for all objects are evaluated. Furthermore the classic covariance matrix is also calculated to
provide the Mahalanobis distance for each data item. Both distance measures are visualized in
a scatterplot, which is shown in figure 6.9. Additionally the squareroot of the quantile of the
chi-squared distribution is drawn, which acts as decision boundary for the outlier classification.
The quantile value can be interactively steered by the user. Thus the outlier detection can be
interactively modified.

In this example the limit for non-outliers is set to a robust distance of 5.736, which
corresponds to the squareroot of the 0.9999 quantile of the chi-squared distribution with 12
degrees of freedom. While the Mahalanobis distance would have classified at about 50 data
items as outlying, the robust distance detects 1087 outliers. The reason for this tremendous
amount may be that the distribution does not fully satisfy the needs of the outlier detection
algorithm.

As further analysis tools the data items are mapped on the first two robust principal com-
ponents, which are calculated from the previously mentioned robust covariance matrix estimate.
These projected data points are shown in a scatterplot, for which two highlighting modes exist.
The first shows the detected outliers and is linked with the interactive outlier detection view.
The second marks those data items that were used for the calculation of the robust covariance
matrix.
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Figure 6.8: Scatterplots showing the quantiles of the normal distribution versus the ascend-
ing ordered values of the variable RPT non transformed (a), log transformed (b), squareroot
transformed (c).
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Figure 6.9: Outlier detection view plotting the Mahalanobis distances versus the robust dis-
tances. The chi-squared quantile value used as decision boundary for the outlier detection is
represented by vertical and horizontal lines.

Both visualization modes for this example are shown in figure 6.11. Here it is obvious
that mainly data items on left side of the data cloud are detected as outliers. The reason for this
observation is that the objects, on which the computations are based, are located in the right part
of the data cloud. An ideal situation would be, if these data points would be located near the
center of the dataset, and those objects that are positioned at the boundary of the dataset, would
be identified as outlying.
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Figure 6.10: Scatterplots showing the data items mapped on the first and the second robust
principal component. In (a) the detected outliers, in (b) the used data items for the calculation
of the robust covariance matrix are highlighted.

Figure 6.11: Visual group fingerprints for the actual data (a) and the detected outliers (b).

Finally a visual analysis of the actual data and the outliers in comparison to the overall
data has been accomplished. This evaluation shows that the detected outliers have significantly
lower wind speeds as the whole data set. But as this group can be heterogeneous a clustering is
applied in the following section.
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Figure 6.12: The final clustering result partitioning the detected outliers shown in parallel coor-
dinates (a) and in a 2D scatterplot visualizing the first and second principal components (b).

6.2.3 Clustering of Detected Outliers

For the clustering of the identified outliers the visualizations do not reveal any significant groups
in the data. Consequently the interactive clustering approach can be used to reposition the
cluster centers in order to find better partitions by starting reclustering operations. This was
performed several times. The final result is shown in figure 6.12.

The parallel coordinates show that visualizations of the cluster centers cross each other
several times. The single exception is the red cluster center, which covers the highest values in
all attributes. It is interesting, that the clusters can be ordered according their dominant rank of
the dimension values of their centers. This implies the group sequence red, green, yellow, cyan,
blue and magenta. Crossings between cluster centers can only be observed for neighbouring
groups. For example the yellow cluster center only crosses with the green and the cyan centers.
Remarkable dimension pairs could thus be identified as those neighbouring attributes, which
show a high number of crossings. Examples are the pairs VAL,ROS and DUB,CLA. It is
also obvious that the main trends in this group of outliers do not show a uniform behaviour
in all dimensions. Fluctuations in the attribute values are common, especially the variables
VAL,DUB and MUL seem to be outstanding, because on these locations most of the groups
have their maximum wind speeds.
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Figure 6.13: The final clustering result partitioning the real data shown in parallel coordinates
(a) and in a 2D scatterplot visualizing the first and second principal components (b).

6.2.4 Interactive Clustering of the Actual Data

Analogous to the group of outliers the remaining data does not show agglomerations in the
projection of the first two principal components. But in this case the first principal component
explains 78 % of the variance in the data, while the second only covers 6.5 % of the information.
Hence the clustering introduces nearly horizontal group boundaries in the scatterplot shown
in figure 6.13 (b). The parallel coordinates (figure 6.13 (a)) show that the data items have a
uniform behaviour in all attributes and that the clusters simply divide the data items according
to the magnitude of the average wind speed per attribute. Consequently the number of clusters
that is chosen as well as the partitions that are introduced are highhanded, because there is no
significant group structure in the data. Nevertheless the cluster centers show the main trends
in the data, which seem to be the same for each cluster: Peaks in the center patterns can be
observed at the stations RPT,DUB,MUL and CLO, while S HA,CLA and BEL show low center
positions. An interesting question that could not be answered with the implemented tool is,
whether the visualization of the same value range on each attribute can even out these patterns,
so that the cluster centers appear as flat lines.
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Concluding it can be said, that the detected outliers can be seen as those days, on which
different wind conditions could be observed at the meteorological stations. From the analysis
of the outlier fingerprints in figure 6.11 it can be seen, that these days in average are the calm
days with low wind speeds, which is valid for all stations except for the measurements taken at
ROS . There no difference between the average values of the identified outliers and the actual
data can be seen.



Chapter 7

Implementation

This section provides a short documentation of the classes of the statistics library. Therefore
general issues of the implementation are discussed. Afterwards the functionalities are addressed
by explaining computations that are possible as well as giving example calls of functions and
runtime estimates.

7.1 General Comments

To allow the fast processing of millions of data items the statistics library was implemented in
C++. The main issues that were considered were to provide methods for interactive changes of
the parameters for the statistical routines and to allow the work with datasets containing millions
of data items. To fulfil the latter demand, fast loops using pointer operations were implemented
to run through all values of large float arrays as fast as possible. Especially for robust routines
a sorting process is very often used. To avoid the overhead of many sorting operations a fast
algorithm for finding the k smallest element [30] of an array was implemented. Empirical tests
show the advantage of this algorithm in comparison to a sorting routine.

The interfaces were created in a way that each routine returns a bool value indicating
true, if the calculations finished successfully. This is a must to provide a rather simple concept
for handling exceptions and thus a safe usage of the library. The first parameters that are passed
to the routines are those, into which the result values are written. Thus single variables and
const float pointers for the access of read only float arrays are passed by reference. For
methods that provide copies of a set of values an already created array, into which the values
are written, is needed for the function call. The next parameters of the methods are data specific
parameters like values of the needed dimensions, the covariance matrix or the mean vector on
which the further calculations are based. The final set of parameters concern the properties of
the statistical routine. An example is the number of clusters or the maximum number of itera-
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tions for the k means clustering algorithm. A further feature is to provide as much functionality
via static methods as possible. So unnecessary object creation and deletion is avoided and the
written code to use those methods becomes shorter and easier to read.

Algorithms like the principal component analysis or the calculation of correlation mea-
sures are based on routines provided by the numerical recipes in C [95]. Those routines were
developed to provide fast and numerical stable computations of often needed procedures such
as the calculation of the eigen values of a matrix. The numerical recipes routines in use are
mentioned for each functionality.

Routines like the calculation of classic moments and the transformation of data values
are also implemented on data structures provided by the Information Visualization Library
(IVL) [91]. These data structures allow the management and the fast processing of large data
chunks.

Furthermore this section provides an estimate for the running times of the algorithms of
the statistics library. Those running times were timed on an ASUS laptop with Intel Pentium
Mobile Technology and a clock frequency of 1.73 GHz and a main memory of 1 GB.

To emphasize that a certain functionality is provided by the statistics library, the prefix
SL is used for all class names. Classes that operate on the data structures of the Information
Visualization Library are indicated by the prefix SLIVL.

7.2 Utils and Matrix Operations

The class SLUtils supports four basic operations that are invoked by calling static methods.
First a rank calculation for a given float array is implemented, returning the positions of
the data values in ascending order. Equal values are ignored and thus have different ranks.
Second the getKSmallestValue routine returns the k smallest element of a given float ar-
ray. For this functionality the algorithms RANDOMIZED-SELECT, RANDOMIZED-PARTITION and
PARTITION [30] were integrated in the library to make a faster alternative to the qsort routine
available. The qsort method performs a quick sort algorithm that is provided by the standard
C++ libraries. This alternative is used, if not the whole sorted list of values is needed. Because
especially robust statistical routines are based on identifying the data value of a specified rank,
this method is often called and helpful for the further integration of the robustness in visual data
mining applications. Therefore the running time of the routine was tested to ensure a good per-
formance. The table 7.1 shows the run time comparison between the qsort algorithm with the
following output of the k smallest element and the getKSmallestValue routine. Each method
was tested five times on three datasets with different number of data items. For the comparison
the median as well as the mean of the running times in milliseconds were taken.
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Number of data items 618.600 1.546.500 3.093.000
Median kSmallest 32 47 79
Mean kSmallest 128 1581 91
Median qsort 2703 7922 15250
Mean qsort 3281 12684 17734

Table 7.1: Runtimes in milliseconds of two different approaches to retrieve the k smallest ele-
ment.

The third functionality of the class SLUtils is the count of unique values, which is im-
portant to test, whether there are dominant categories in the given array. The fourth operation
arises from the third and returns the unique values themselves.

Assuming the presence of a given float array pValues holding iEntryNum data values
and the rank k for which the data value should be retrieved, the routines of SLUtils can be
called as follows:

int* pRanks = new int[iEntryNum];

bool bIsCorrect = SLUtils::getRanks(pRanks, pValues, iEntryNum);

float fKSmallest = 0.0f;

bIsCorrect = SLUtils::getKSmallestValue(fKSmallest, pValues, 0,

iEntryNum-1, k);

int iUniqueValNum = 0;

bIsCorrect = SLUtils::countUniqueValues(iUniqueValNum, pValues, iEntryNum);

float* pUniqueValues = new float[iUniqueValNum];

bIsCorrect = SLUtils::getUniqueValues(pUniqueValues, iUniqueValNum,

pValues, iEntryNum);

Another helpful class is SLMatrixOperations which realizes the calculations of the de-
terminant and the inverse of a matrix. To achieve this, the routines ludcmp and lubksb of
the numerical recipes in C are in use. For the given two dimensional float array pMatrix

and pInvMatrix holding iDimNum × iDimNum values the matrix operations can be invoked as
follows.

float fDeterminant = 0.0f;

bool bIsCorrect = SLMatrixOperations::getDeterminant(fDeterminant, pMatrix,

iDimNum);

bIsCorrect = SLMatrixOperations::invertMatrix(pInvMatrix, pMatrix,

iDimNum);
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7.3 Distance Measures

The class SLDistances provides static methods for the calculation of the Manhattan, Euclidean,
the Mahalanobis and the robust distance. Furthermore the squared Mahalanobis, squared robust
and the squared Euclidean distance can be computed. A dimension weighting option is available
for the Manhattan, the Euclidean and the squared Euclidean distance. If no position is given,
to which the distances should be calculated, the mean vector of the given data items is used as
reference point.

The routine for the calculation of the robust distance has as additional parameter the
degree of robustness ranging from 0 to 1. This property is used for the robust estimate of
the covariance matrix, where 1 indicates the maximum possible robustness and 0 the classic
covariance matrix estimate. Because the Mahalanobis and the robust distance are based on the
inverse covariance matrix, the matrix inversion routine of the class SLMatrixOperations is
called.

Given a dataset represented by a SLDataMatrix object pData with iEntryNum data items,
a possible function call for the calculation of Manhatten distances could be as the following.
Other distance calculations are invoked similarly.

float* pDistances = new float[iEntryNum];

bool bIsOK = SLDistances::getManhattanDistances(pDistances, pData);

7.4 Moments

The class SLMoments provides methods for the computation of the classic moments arithmetic
mean, variance, standard deviation, skewness, kurtosis and mean of absolute deviation. There-
fore the routine moment of the numerical recipes in C has been adapted. The robust moments
median, median of absolute deviations (MAD), quantiles and inter quartile range are also made
available. These computations call sorting routines like qsort or the getKSmallestValue

method of SLUtils. Thus they introduce a rearrangement of the passed array holding the data
values. Besides the classic and robust measures the library also provides the calculation of the
trimmed mean and the trimmed standard deviation with an additional parameter steering the
trade-off between robustness and efficiency.

To perform the calculation of a moment a float variable has to be created that is passed
by reference so that the result can be written into it. As final parameters the array pValues

holding the data values and iEntryNum indicating the number of array entries are specified. To
calculate all classic and all robust moments the following function calls can be applied.
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bool bIsCorrect = SLMoments::getClassicMoments(fMean, fAbsDev, fStandDev,

fVariance, fSkewness, fKurtosis, pValues, iEntryNum);

bIsCorrect = SLMoments::getRobustMoments(fFirstQuartile, fMedian,

fThirdQuartile, fIQR, fMAD, pValues, iEntryNum);

Furthermore a one dimensional outlier detection can be invoked. For this method a nearly
normal distributed sample is assumed. The user can specify the percentage of outliers that is
expected. The outlier detection returns a bool array setting a flag for each data item indicating,
whether it is detected as an outlying value.

The class SLIVLMoments provides methods for the calculation of the classic moments
by using the data structure IVLAttributedScalarContents of the Information Visualization
Library. This implementation also allows specifying subsets of data items for which these
estimates are computed.

7.5 Correlation Operations

The class SLCorrelation provides methods for the calculation of the classic Pearson correla-
tion as well as for the robust Spearman and Kendall correlation. For this functionality routines
from the numerical recipes in C are applied. For the classic correlation coefficient the method
pearsn is used. To compute the two robust correlation measures the routines spear and kendl1

are called respectively. These implementations additionally provide probability values, which
indicate with values near zero a significant correlation. A high probability value confirms the
null hypothesis that states that two dimensions are not correlated.

A runtime analysis of the correlation calculations was only possible for the Pearson and
the Kendall correlation, because the Spearman correlation considers all possible pairs of data
points and thus has quadratic computation effort in the number of given data items. The table 7.2
thus shows the computation times for the Pearson and the Spearman correlation on three datasets
with different numbers of data items.

Number of data items 618.600 1.546.500 3.093.000
Pearson 16 78 78
Spearman 375 813 1609

Table 7.2: Runtimes of two different correlation measures in milliseconds.

For the computation of the correlation measures the functions getPearsonCorrelation,
getKendallCorrelation and getSpearmanCorrelation are provided. For these methods two
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float parameters have to specified, into which the correlation coefficient and the probability
indicating the significance of the correlation pattern are written. Furthermore two float arrays
are passed holding the data values of the two dimensions that should be analyzed. Finally the
number of data items is indicated by the int variable iEntryNum. Consequently a function call
for the calculation of the classic correlation can be stated as follows.

bool bIsCorrect = SLCorrelation::getPearsonCorrelation(fCorrCoeff,

fProbability, pDimValues1, pDimValues2, iEntryNum);

Besides the possibility of the calculation of the correlation between two dimensions the
computation of a correlation matrix is provided to summarize the coherences between a set of
dimensions. This implementation writes the correlation values above the main diagonal and the
probability values below the main diagonal of the matrix into the given two dimensional array.
In the function call for the correlation matrix calculation a parameter can be passed indicating
which correlation measure should be used.

Furthermore a hierarchical clustering of a given correlation matrix can be performed. The
clustering creates a SLDendrogram object, which allows the access to each dimension group,
which arose during the hierarchical grouping process. A dimension group is represented by an
SLDendrogramNode. These data structures can also be used for a hierarchical clustering on data
items. But therefore modifications concerning the performance and the data management have
to be accomplished.

The class SLIVLCorrelation provides the calculation of the Pearson correlation by us-
ing the data structure IVLAttributedScalarContents of the Information Visualization Li-
brary. Again it is also possible to compute the classic correlation between a pair of dimensions
as well as the correlation matrix between a set of dimensions. To realize the correlation com-
putation the routine pearsn had to be adapted to perform all calculations on the given IVL data
structure. These methods also allow the computation of the correlation measure on a subset of
data items, by specifying a start index and the number of objects that should be considered.

7.6 Transformations

The class SLTransformations makes popular transformations available via static methods.
For each transformation a method overwriting the given values with the transformed ones and
a method writing the results in a separate array exist. The latter differs in the function name by
the tag Copy. The following Transformations are provided:
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• Absolute transformation: f (x) = |x|

• Squareroot transformation: f (x) =
√

x

• Logarithm naturalis transformation: f (x) = ln(x)

• Logarithm to the base of 10 transformation: f (x) = log10(x)

• z standardization with given mean x̄ and given standard deviation σ: f (x) = x−x̄
σ

Instead of mean and standard deviation also robust measures can be passed, which results
in a robust z standardization.

• Classic z standardization, where the mean x̄ and the standard deviation σ are calculated
from the given data values: f (x) = x−x̄

σ

• Robust z standardization, where the median x̃ and the MAD are calculated from the given
data values: f (x) = x−x̃

MAD

• α robust z standardization, where the alpha trimmed mean m(α) and the alpha trimmed
standard deviation are calculated from the given data values: f (x) = x−m(α)

s(α)

• Inverse z standardization with given mean x̄ and given standard deviation σ: f (x) =
x ∗ σ + x̄

• Linear scale to unit interval with given minimum and maximum: f (x) = x−min
max−min

• Linear scale to unit interval, where the minimum and maximum are calculated from the
given data values: f (x) = x−min

max−min

• Linear scale to arbitrary interval [min,max]. Therefore the data values must lie in the unit
interval: f (x) = x−min

max−min

• Scale zero preserving: A linear scale to the [−1, 1] interval, where zero values are mapped
to zero. Other values keep their sign but are linearly scaled so that the maximum absolute
value is mapped to 1.

Besides the linear and non linear transformations for mapping data items to a certain
value range respectively for manipulating their distribution this implementation also covers
inverse projections such as the inverse z standardization. These functions allow mapping data
items or computed facts such as cluster centers back to the original value range of the dimension.

An example for the invocation of a transformation is given by a squareroot transformation
on the iEntryNum data values of the float array pValues. Therefore the transformed values
are first copied into a new created array. The second call of the transformation overwrites the
original data values.
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float* pSqrtTrafo = new float[iEntryNum];

bool bIsCorrect = SLTransformations::sqrtTransformationCopy(pSqrtTrafo,

pValues, iEntryNum);

bIsCorrect = SLTransformations::sqrtTransformation(pValues, iEntryNum);

Additionally a subset of these transformations is also implemented as iterators based on
the data structure IVLAttributedScalarContents of the IVL. The implemented transforma-
tions and their iterator classes are:

• Absolute transformation: SLIVLAbsoluteIterator

• Squareroot transformation: SLIVLSquareRootIterator

• Logarithm naturalis transformation: SLIVLLogIterator

• Logarithm to the base of 10 transformation: SLIVLLog10Iterator

• z standardization: SLIVLZStandardizationIterator

• Inverse z standardization: SLIVLZDestandarizationIterator

• Linear scale to unit interval: SLIVLUnitIntervalIterator

• Linear scale to arbitrary interval: SLIVLIntervalIterator

• Linear zero preserving scale: SLIVLZeroPreservinScaleIterator

7.7 Covariance Matrices

The class SLCovarianceCalculator provides static methods for the computation of the classic
covariance matrix. Those methods support the use of all data items or of subsets of the data
points. The necessary mean vector that is subtracted from the data items can be passed as
parameter. If it is not given, the mean vector of the used data items is calculated. For the robust
estimate of the covariance matrix an object of this class has to be instantiated. Thereby the
following parameters for the Minimum Covariance Determinant (MCD) algorithm can be set:
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• iStartSubsetNumber: The number of initial subsets that should be created for the search
of the global optimum.

• iStartImproveSteps: The number of improvement iterations that should be performed
on the initial subsets.

• iBestSubsetNumber: The number of subsets that should be improved until convergence
is reached.

The standard constructor sets the recommended values of 500 initial subsets, on which
2 improvement iterations are performed, whereupon the 10 best solutions were chosen for the
improvement iterations until convergence is reached.

The function call for the calculation of the robust covariance matrix takes a parameter
steering the degree of robustness of the estimate. A value of 0 indicates that the classic covari-
ance matrix is returned, while a value of 1 makes the most robust estimate with a break down
point of near 50 % possible, meaning that nearly half of the data can deviate from the main
behaviour of the data points. After running the MCD algorithm the robust covariance matrix,
the used robust mean vector and the chosen subset of data items that were considered for the
covariance estimate can be retrieved.

A comparison of the runtimes of covariance matrix calculations is given in table 7.3.
There both, the classic and robust, algorithms are applied on datasets containing different num-
bers of dimensions and data items. For the robust covariance calculation the previously men-
tioned standard settings and the maximum robustness factor were used. Thus to reduce the
running time, lower numbers of samples could be set.

Number of data items 618.600 1.546.500 3.093.000
Classic covariance matrix (5 dimensions) 93 204 422
Classic covariance matrix (10 dimensions) 281 687 1406
Classic covariance matrix (15 dimensions) 594 1453 2922
Robust covariance matrix (5 dimensions) 25344 148562 209250
Robust covariance matrix (10 dimensions) 110329 188391 339921
Robust covariance matrix (15 dimensions) 154578 323219 439203

Table 7.3: Runtimes in milliseconds of the classic and robust covariance matrix calculation for
different dataset sizes.
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To invoke the calculation of the classic covariance the data has to be provided as a
SLDataMatrix object. As parameter also a two dimensional float array has to be created.
This array represents the matrix, into which the covariances and variances are written. Thus its
dimensionality must match the number of attributes in the data. A possible function call with
the two dimensional float array pCovMatrix and the SLDataMatrix object pData looks like
this:

bool bIsCorrect =

SLCovarianceCalculator::calculateClassicCovarianceMatrix(pCovMatrix,

pData);

For the robust covariance calculation a SLCovarianceCalculator object has to be in-
stantiated. Afterwards the object representing the data is passed to the invocation method of
MCD algorithm. Finally the computed information can be retrieved by get methods.

SLCovarianceCalculator* pCovCalc = new SLCovarianceCalculator();

bool bIsCorrect = pCovCalc->calculateRobustCovarianceMatrix(pData);

const float** pMCDCovMatrix = NULL;

bIsCorrect = pCovCalc->getMCDCovarianceMatrix(pMCDCovMatrix);

7.8 Principal Component Analysis

The class SLPrincipalComponentAnalysis allows the calculation of the principal component
analysis (PCA). To do that, an object of this class has to be instantiated, for what two options
exist. The first possibility allows passing a previously computed covariance matrix and a mean
vector to the object. The way those parameters were computed (robust or classic) decide how
the PCA is influenced by outlying values. The alternative to that is to specify the data points
on which the PCA should be based and a float value between 0 and 1 indicating the degree
of robustness that should be used for the covariance estimation, which is now called by the
SLPrincipalComponentAnalysis object. The specification of the robustness can be omitted,
if the classic covariance matrix should be considered for the PCA.

For the evaluation of the eigen values and eigen vectors of the covariance matrix the
routines tqli and tred2 of the numerical recipes in C were used. This task is performed
during the instantiation. Afterwards the principal components and the explained variances of
arbitrary subsets of principal components can be retrieved. Furthermore it is possible to map
data items on specified principal components.

For a given SLDataMatrix object pData representing the data the following code achieves
a mapping of the data items on the first principal component.
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SLPrincipalComponentAnalysis* pPCA = new

SLPrincipalComponentAnalysis(pData);

float* pMapping = new float[iEntryNum];

bool bIsCorrect = pPCA->mapOnPrincipalComponent(pMapping, pData, 0);

The runtime for the calculation of the principal components of a given covariance matrix
with dimensionality 25 amounts 157 milliseconds. For a matrix holding 50 × 50 entries 547
milliseconds of computation time were needed.

7.9 Clustering

The k means clustering functionality is provided by the class SLKMeansClustering. To perform
the clustering an object of this class has to be instantiated. The constructor sets the standard val-
ues 10 respectively 0 for the maximum iteration number and for the minimum update distance
of the cluster centers. Set methods provide the possibility to change these standard settings.
Additionally dimension weights can be specified. If no weights are in use, all attributes are
treated with equal importance. Two different calls to invoke the k means clustering exist. The
first specifies the initial cluster centers by an SLClusterCenters object. This object represents
the k cluster centers in each dimension, which is used for the clustering. For the second option
only the number of clusters has to be passed to the routine. Additionally this method allows
to set a flag indicating if the cluster centers should be randomly chosen or found by the best 5
k means algorithm on a small subset of 300 data items. Both clustering invocations need the
data items that should be clustered represented as a SLDataMatrix object. Furthermore a flag
could be set, indicating, whether the means or the medians per dimension of the data items per
cluster should be used to set the new cluster centers. The same is valid for the distance measure,
where the user can choose between the Euclidean and the Manhattan distance. If those flags
are not specified by the function call, the standard settings are used, meaning that the Euclidean
distance and the means of the data items are calculated during the clustering. After the cluster
process get functions allow the retrieval of the calculated value of the objective function of the
k means clustering result as well as the cluster ids and the distances to the nearest cluster cen-
ter per data item. Additionally the cluster centers and the number of items per cluster can be
queried.

The following code snippet performs a k means clustering on a SLDataMatrix object
pData and generates iClusterNum groups. Finally the cluster ids are requested and the number
of ids is written into an int variable.
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SLKMeansClustering* pKMeans = new SLKMeansClustering();

bool bIsCorrect = pKMeans->performKMeans(pData, iClusterNum);

const int* pClusterIDs = NULL;

int iIDNum;

bIsCorrect = pKMeans->getClusterIDs(pClusterIDs, iIDNum);

In table 7.4 the runtimes are stated for the k means clustering performed on datasets
containing different numbers of data items and dimensions. Therefore the cluster centers were
calculated by using the arithmetic mean of the objects assigned to a cluster. In table 7.5 the
corresponding computation times are shown for the k means based on the median calculations
for the cluster centers.

Number of data items 618.600 1.546.500 3.093.000
Number of dimensions 5 10 5 10 5 10
5 clusters 2250 4125 5734 10969 11250 20500
10 clusters 3734 6797 9579 17719 19109 34516

Table 7.4: Runtimes in milliseconds for k means on different dataset sizes whereby 5 as well as
10 clusters were generated. The arithmetic mean was used for the cluster center calculation.

Number of data items 618.600 1.546.500 3.093.000
Number of dimensions 5 10 5 10 5 10
5 clusters 4375 13125 8641 15167 17906 29734
10 clusters 7485 10890 14344 23047 25062 43547

Table 7.5: Runtimes in milliseconds for k means on different dataset sizes whereby 5 as well as
10 clusters were generated. The median was used for the cluster center calculation.

The similar procedure can be applied to the class SLFuzzyKMeans, which implements the
fuzzy k means clustering. Before the clustering as additional parameters to those introduced
by the k means algorithm the fuzzification exponent can be set. The invocation of the fuzzy
clustering can be accomplished as explained above. Merely the get methods provide different
information per data item. Instead of the cluster ids and the distances to the nearest cluster, the
memberships per data item to a given cluster are provided. The runtimes of this fuzzy clustering
implementation are summarized in table 7.6.
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Number of data items 618.600 1.546.500 3.093.000
Number of dimensions 5 10 5 10 5 10
5 clusters 10922 13516 27375 33500 53937 60937
10 clusters 28046 33219 69797 83016 139360 166234

Table 7.6: Runtimes in milliseconds for the fuzzy k means clustering on different dataset sizes
whereby 5 as well as 10 clusters were generated.

7.10 Regression

The class SLRegression provides a static method for the calculation of the least squares re-
gression. For this function the independent dimensions of the data items have to be specified
by a SLDataMatrix object. The dependent values of the data points are passed as a float

array. For the calculation of the regression parameters the matrix inversion implemented by
the SLMatrixOperations is used. The parameters are written into a float array, that has an
additional entry for the constant regression estimate besides the estimates for each independent
variable. Thus a possible invocation of the linear regression with the SLDataMatrix object
pXData and the float array pYValues can be accomplished as follows.

float* pRegCoeff = new float[iDimNum+1];

bool bIsCorrect =

SLRegression::getLeastSquaresRegressionParameters(pRegCoeff, pXData,

pYValues);

In table 7.7 the runtimes for the least squares linear regression implementation are given
for different numbers of independent attributes and data items.

Number of data items 618.600 1.546.500 3.093.000
Linear regression (1 independent variables) 63 156 281
Linear regression (2 independent variables) 125 343 594
Linear regression (5 independent variables) 453 1016 3797
Linear regression (10 independent variables) 17844 6359 5985

Table 7.7: Runtimes in milliseconds of the linear regression applied on different dataset sizes.
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7.11 Theoretic Distributions

The five provided theoretic distributions are implemented in the classes

• SLUniformDistribution,

• SLNormalDistribution,

• SLLogNormalDistribution,

• SLChiSquaredDistribution and

• SLExponentialDistribution.

All classes provide static methods to retrieve the density values (pdf), the distribution
values (cdf), the quantiles and accordingly distributed random values. Each method allows the
setting of the parameters of the distribution. If standard parameters like the zero mean and the
standard deviation of 1 for the normal distribution are in use, the settings can be omitted. Thus
the function calls are shorter and look like these:

SLNormalDistribution::getDensityValues(pPdf, pXValues, iEntryNum);

SLNormalDistribution::getDistributionValues(pCdf, pXValues, iEntryNum);

SLNormalDistribution::getQuantileValues(pQuantileValues, pQuantiles,

iEntryNum);

SLNormalDistribution::getRandomValues(pRandomValues, iEntryNum);

Thereby the first parameters represent arrays into which the results of the routines are
written. The float arrays pXValues and pQuantiles hold the data values respectively the
quantiles, which are needed for the calculations. The int variable iEntryNum specifies how
many entries the arrays contain.

For the creation of the random values that are distributed according to the given distri-
bution the method ran2 of the numerical recipes in C is used. This routine is not the fastest
random number generator provided by this library but it ensures a sequence of non repeating
random numbers with a length of more than 2 × 1018.

Besides the random number generation further routines of the numerical recipes in C had
to be integrated into the library to provide these functionalities. Because there is no analytic
solution for the integral of the probability density function (pdf) of the normal and the log
normal distribution the values of the cumulative distribution function (cdf) have to be integrated
numerically. Hence the routine qromb implementing the Romberg’s numeric integration scheme
is in use. This routine calls the helping methods trapzd and polint. For the computation
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of the pdf of the chi-squared distribution the function gammln returning the logarithm of the
gamma function is integrated. The cdf of the chi-squared distribution requires the evaluation
of the incomplete gamma function, which was realized by adding the routine gammq to the
implementation.

7.12 Statistical Tests

The class SLKolmogorovSmirnovTest provides functionality to test, if a set of float values
comes from a normal, log normal, exponential or uniform distribution. Additionally a test if
two samples come from the same distribution is possible. To invoke this functionality, an ob-
ject of this class has to be instantiated and the needed test can be applied by calling one of the
five test functions. Afterwards the significance level (p-value) and the Kolmogorov-Smirnov
statistic can be retrieved by get methods. An important parameter concerning the tests is the
significance, which is the decision limit for the significance level deciding, whether the null
hypothesis is rejected or not. This parameter can be set in the constructor or by a set method.
The standard value for the significance is 0.05. For the calculation of the Kolmogorov-Smirnov
test the routine ksone of the numerical recipes in C was adapted for the test between a sample
and a theoretic distribution, while testing for the same distribution of two samples is based on
the routine kstwo. To evaluate the p-value for the Kolmogorov-Smirnov statistic the function
probks is in use. The results of the tests show that probks provides a more conservative es-
timate of the p-value than the popular software package R, meaning that the nullhypothesis is
rejected more likely than by using R.

To apply a hypothesis test for uniform distribution on iEntryNum values represented in
the float array pValues the following code snippet can be used. Thereby true is written into
the bool variable bNullHypothesis, if the values come from a uniform distribution.

SLKolmogorovSmirnovTest* pKSTest = new SLKolmogorovSmirnovTest();

bool bNullHypothesis;

bool isCorrect = pKSTest->isFromUniformDistribution(bNullHypothesis,

pValues, iEntryNum);

A comparison between the runtimes of tests for uniform distribution on a single array of
values and of tests for the same distribution based on two samples is presented in table 7.8. For
these tests different numbers of data items were considered.



7.12. STATISTICAL TESTS 114

Number of data items 618.600 1.546.500 3.093.000
Test for uniform distribution 1516 5485 10687
Test for the same distribution 7079 20672 41266

Table 7.8: Runtimes in milliseconds of the hypothesis tests calculation for different numbers of
data items.



Chapter 8

Summary

The exploration of high dimensional datasets is a tremendously growing working field. With the
capabilities of today’s computers to handle data containing millions of data points and thousands
of dimensions it is essential to apply efficient methods to extract the information the user is
searching for. Statistical routines and techniques of information visualization are useful to
achieve this goal. But as one method on its own has several shortcomings combinations between
the different capabilities of these sciences could be developed to improve the exploration of
multivariate data, the so called data mining process.

8.1 Introduction

Information visualization techniques create graphics and animations that stress certain struc-
tures and aspects of high dimensional data. The user, who examines the data, applies his or
her pattern recognition skills as well as the experience and knowledge about the data to draw
the correct conclusions. This is an efficient approach to detect data items of special interest,
examine the main trends in the data or investigate functional dependencies between variables.

In contrast to that statistical routines use the possibilities of computers, which execute
millions of operations within milliseconds. This allows the fast calculation of facts and numeri-
cal summaries. Also models that can predict variable values or introduce a simplification of the
data can be fitted. Thus coherences within attributes as well as significant patterns of the data
items can be revealed and analysed.

Because of the usage of different systems that gather the information of interest, a com-
bination of those sciences would introduce a verification of the results of the applied methods.
Consequently an error detection approach for the data mining process could be established that
decreases the probability that wrong conclusions are implied. But the intelligent application of
the strengths of the disparate techniques also makes a more efficient data exploration possible.

115
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To achieve this collaboration, in this work the implementation of a library containing
statistical routines adapted for the use in information visualization applications is presented.
Because of the vast number of routines developed in the field of statistics for data analysis and
exploration, the basic functionality, that every visual data mining tool should provide, had to be
determined. Furthermore aspects like robustness, which decreases the occurrence of distorted
results caused by outliers, and fuzzyness, which allows soft decision boundaries to describe
uncertainties, are considered. A further demand on the library is that its routines must be able
to process large datasets efficiently.

Furthermore a sample application was developed to demonstrate possible combinations
of visualization and statistics. In the focus of this tool are tasks like outlier detection, dimension
reduction and clustering, where computational approaches are combined with visual verifica-
tions and user interactions that can manipulate the results of the statistical routine. Special
attention was paid on an interactive workflow, where the user can determine the order of the
steps of the data mining procedure.

8.2 Related Work

The information visualization techniques to illustrate multivariate datasets are manifold. They
can be roughly classified into the four categories geometric projection techniques, icon-based
and pixel-based approaches and finally hierarchical visualizations [55]. This work applies
graphic representations of the first type, which maps the variables of the data on the screen
space. The most popular approaches of this category are scatterplots and scatterplot matri-
ces [27] as well as parallel coordinates [60]. For scatterplots two attributes are mapped on the
x and on the y axis of the visualization space and data items are represented by points in the
coordinate system that is spanned. To allow an illustration of all dimensions of a dataset a
scatterplot matrix was introduced, which shows all possible tuples of variables by scatterplot
visualizations. The parallel coordinates achieve the representation of all attributes by mapping
them on axes, which are drawn as equidistant vertical lines. The data items are illustrated by
poly lines which connect the projected dimension values.

Also the field of statistics provides a multitude of analysis procedures for data explo-
ration. In the scope of this work only tasks are addressed that are of special importance for a
visual data mining application. Thus the multivariate outlier detection, dimension reduction and
clustering techniques are considered.

As outliers strongly influence statistical routines and cause wrong results, an efficient
detection of these objects is crucial. For this purpose a variety of heuristics has been developed.
The most popular approaches are distance based, density based and distribution based methods.
Routines of the first type consider the distance of each data item to its k nearest neighbour.
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If this distance exceeds a user specified limit, the object is identified as outlier [74]. Density
based techniques refer to a volume parameter and a minimum number of data points that has
to be located within this volume to define dense regions. Data items that could not be assigned
to such an area are marked as outlying [21]. The multivariate outlier detection application
that is applied in this work uses a distribution based approach, which assumes that the data
applies to a multivariate elliptic distribution. This demand is necessary, because for each data
item the robust distance is calculated, which is based on the robust estimate of the covariance
matrix [101], that describes the shape of the data cloud. If the data objects correspond to the
distribution constraint their distance measures show a chi-squared distribution. Consequently
a chi-squared distribution quantile can be considered to determine a decision boundary that
differentiates between outliers and actual data points.

Clustering approaches group similar data items to introduce partitions of the data. The
main two methodologies for this task are hierarchical and partitional techniques. A hierarchical
clustering based on a merging operations initiates each data item as cluster. Afterwards the two
most similar clusters are merged to a new cluster. This procedure is iteratively performed until
only one cluster representing the whole dataset remains. This nested group structure can be
represented by the tree-like dendrogram. In contrast to that partitional approaches assign data
items to clusters according to an update rule that optimizes a global energy function. The most
popular algorithm of this type is the k means clustering [50], where k indicates the user defined
number of partitions that are created. While these routines assign each data item to exactly
one cluster, fuzzy clustering approaches exist, which calculate for each data item membership
values that indicate to which degree it is associated with each cluster. For this purpose the fuzzy
k means algorithm [17] was considered.

To reduce the dimensionality of a dataset three main techniques were introduced. The
self-organizing maps (SOM) [76] are based on an unsupervised machine learning approach, that
tries to iteratively fit reference vectors in data space to the structure of the data items. These
vectors are connected in a two dimensional lattice which represents the low dimensional projec-
tion of the data. Multi dimensional scaling (MDS) techniques [77] try to achieve a projection of
the multivariate data that maintains the distance relationships between pairs of data items. The
simplest but nevertheless popular dimension reduction technique is the principal component
analysis (PCA) [61], which evaluates the directions of the major variances in the data cloud.
These directions are called the principal components, on which a mapping of the data items can
be performed. As the first principal components describe the majority of the variance in the
data, the main information of the data space is captured by the spanned subspace.

Feature subset selection approaches have the same aim as dimension reduction tech-
niques. But a low dimensional representation of the data is achieved by choosing only the most
informative data attributes. As this concept was developed for supervised machine learning



8.2. RELATED WORK 118

routines, it is difficult to apply it for the data exploration, because no measure for the quality of
an attribute can be intuitively introduced.

The integration of computational routines in information visualization applications gained
importance in the last 10 years. For this mainly clustering and the creation of low dimensional
data representations were applied. The reasons why data partitioning has been favoured are that
group finding algorithms provide a fast categorization of the data and significantly improve the
detection and interpretation of the main trends. The focus on the reduction of variables simply
rises from the fact that humans are used to think in three dimensional spaces, while multivariate
datasets represent their main information in a higher number of attributes. To overcome this
discrepancy, projection methods as well as feature subset selection approaches were applied.

But while simple visualizations of statistical results only serve to explore and present
them, an interactive combination of statistics and visual techniques is rarely realized. An exam-
ple for a successful interactive collaboration of both fields is the Visual Hierarchical Dimension
Reduction (VHDR) [121] system, which applies a hierarchical clustering on the attributes of
the data. The introduced dimension groups can be investigated and modified by using Inter-
Ring [122] a radial visualization tool for hierarchical data. Finally representative dimensions
per selected cluster can be chosen. This approach integrates the user’s knowledge and experi-
ence into the feature subset selection task for which a starting point is created by a statistical
routine.

An interactive visual feature subset selection and clustering tool is presented by Guo [46].
By calculating a measure for the ”goodness of clustering” for each pair of variables a colour
coded matrix visualization is established, where bright fields represent attribute combinations
that show significant cluster structures. As an ordering heuristic is applied the user can identify
light regions in the visualization which represent groups of variables that contain groups of
data items. These dimensions can be selected and used for a hierarchical clustering approach
that detects groups of arbitrary shapes, because of the integration of graph and density based
clustering concepts. The additional parameters that were introduced by these enhancements as
well as the number of detected groups in the data can be steered by interactive visualizations.

A further example describing the power of the combination of visualizations and com-
putational routines is the HD-Eye approach [55], which adapts the OptiGrid clustering [54], so
that the user is involved in the group finding process. A density estimation of the clustering
procedure is used to decide, whether the data space can be subdivided by separators such as
hyper planes that are positioned in sparse regions. To achieve this, a set of projections is sug-
gested from the system, for which an icon-based visualization indicates, if a mapping is helpful
to decide, where a separator can be introduced. The user can select the projection that shows
the most significant gaps between groups of data. A histogram-like view, showing the agglom-
erations of data items by high bars is used to define a separator. This approach is iteratively
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applied, until no subspaces can be divided anymore. Consequently this approach is an attempt
to incorporate the capabilities of the human visual system into a clustering routine to achieve
better results.

8.3 Integration of Statistical Functionality in Visualization

As the sciences visualization and statistics rely on different systems that analyse the data, their
weaknesses and strengths are mostly dissimilar. Interactive visual applications provide graph-
ics that can be modified by the user to achieve an efficient information drill down process,
where firstly an overview is given. Afterwards zooming and filtering techniques allow the con-
centration on patterns or data items of special interest. Finally details-on-demand operations
show numerical summaries or the data values of the selected subset themselves. Consequently
mainly the user’s extraordinary pattern recognition skills and knowledge about the data guides
the exploration process [108].

Contrary to that statistical routines are algorithms and calculations of formulas that use
computers to cope with the enormous computational effort for large datasets. This implies that
the applied procedures have to be well chosen for the data that should be analysed. Conse-
quently if a dataset contains clusters of arbitrary shapes, a k means clustering may produce
low-quality results, because it only creates spherical groups. As this example shows, a general
purpose method may fail on a given dataset and the detection of this failure is difficult to ac-
complish. Furthermore the presence of outliers can also significantly distort results of statistical
routines.

Therefore the following discussions propose possible combinations of statistical meth-
ods and information visualization techniques for clustering, outlier detection and dimension
reduction that may compensate the drawbacks of individual approaches.

8.3.1 Grouping of Data Items

The most popular statistical routine in data mining applications is clustering, that introduces
partitions of the dataset. The detected groups can be seen as a simplification of the data that
allows an easier interpretation of the main patterns. But clustering results are also used to create
clearer visualizations and a reduction of data items for time consuming calculations.

Consequently a clustering algorithm can introduce a meaningful division of the data into
groups. But a visual verification of these partitions is crucial, because the introduced clusters
may not be appropriate for the structures in the data. As general purpose clustering algorithms
suffer that the number of clusters has to be set and/or the created clusters show a specific shape,
their results could be manipulated to achieve a better fit of the real groups in the data.



8.3. INTEGRATION OF STATISTICAL FUNCTIONALITY IN VISUALIZATION 120

A visualization system that captures both the high dimensionality of the data as well as
local features has to be applied to provide a user interface for the exploration and manipulation
of clustering results. In the scope of this work the use of parallel coordinates and scatterplots is
suggested. While the latter makes the intuitive investigation of two dimensional features possi-
ble, a parallel coordinates view illustrates all dimensions of a dataset. Furthermore dimension
reduction techniques are applied to map the data items in a two dimensional space, which is
visualized by a scatterplot. This allows a validation of the quality of the introduced partitions
and represents a user interface for multivariate modifications of the clustering result.

As operations that adapt the introduced partitions clusters can be split, merged or deleted.
Furthermore a cluster can be selected for a subclustering procedure, where only the data items of
the chosen partition are considered for a clustering. But also cluster centers can be repositioned
and objects can be reassigned to the cluster with the nearest center. After those interactions
took place a reclustering based on the adapted clustering result can be initiated to improve
the solution. Thus an interactive information exchange between a computational routine and
the user’s interaction is established, which is a significantly improved system in comparison
to information visualization applications that only allow the exploration of clustering results.
Because now the user is not restricted to the initiation of interactions, that are based on the
perceived (mostly lower dimensional) features, also a routine that considers patterns in data
space can be interactively applied.

8.3.2 Dimension Reduction and Feature Subset Selection

Based on a user defined similarity measure between attributes, a clustering procedure can be
initiated to introduce groups of similar variables. For this purpose a hierarchical clustering ap-
proach is adequate, because it allows the interactive modification of the group number. The
established hierarchy of dimension relationships can be used as starting point for an interactive
feature subset selection application that can also be combined with dimension reduction tech-
niques. Thus a visualization of the dendrogram structure allows an interactive exploration of
the clustering result. Dimensions that are represented by a selected node can be illustrated by
parallel coordinates and serve as decision guidance for the feature selection. Additionally if for
a group no representative dimension can be chosen, a dimension reduction approach is avail-
able. Consequently the main information represented by the cluster of dimensions is captured
by a small number of artificial attributes, which can be selected.

Because a clustering approach, that is not adapted to a specific kind of data, can produce
arbitrarily bad fits to the structure of the dimension coherences, it is crucial that the user exam-
ines the achieved grouping. To accomplish this, the most characteristic attributes of the clusters
as well as those variables that can also be assigned to different partitions have to be determined.
Dimensions of the first category may be those candidates that are chosen by the user to represent
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other dimensions for further operations. Other attributes may be of minor importance from the
clustering point of view. Nevertheless the user can incorporate her/his knowledge in the process
and can also choose those attributes, if they represent crucial information.

Consequently this approach combines a statistical procedure to create an initial solution
for the subset selection problem by introducing groups of dimensions for which a representative
attribute can be chosen. But also the input of the user is required to choose the correct subset
by visually validating the quality of the clustering. If the dimension clusters are visually het-
erogeneous, a new clustering can be tested to achieve a better result or a dimension reduction
approach can be applied.

8.3.3 Multivariate Outlier Detection

In contrast to the detection of clusters, where similar data items are grouped, the identification
of outliers searches for objects that deviate from the main behaviour of the data. Consequently
this subset of data points may be heterogeneous. As browsing and selection techniques of
information visualization applications only highlight data items showing similar properties, this
technique is not adequate to detect high dimensional outliers. Consequently a statistical routine
could be used again as an initial solution for the task. These methods provide parameters that
can be modified to steer the number of identified outlying objects. Thus it is crucial to have
a visual feedback that allows the interactive determination of the optimal parameter settings.
Different linked visualizations, which are also able to apply dimension reduction techniques,
could be used again to help the user accomplishing this task. A projection of the data items
on a low dimensional subspace to realize a scatterplot illustration is especially helpful, because
this approach allows the verification, whether the detected objects are at the border of the data
cloud or deviate from the main groups in the dataset. Thus a validation of the statistical outlier
detection is achieved and data items that are wrongly marked can also be manually deselected,
which enhances the quality of the outlier detection.

The application of multivariate outlier exclusion is crucial for non-robust statistical rou-
tines that calculate misleading results in the presence of outlying objects. In contrast to that
visualizations of large datasets mainly stress the major patterns in the data. Thus it is essential
to detect possibly outlying data items to accentuate their representations.

8.4 Proof of Concept Cases

In two proof of concept cases the benefits of the interactive collaboration of statistical routines
and visualizations have been demonstrated. Therefore five tools have been realized in a sam-
ple application, which address different tasks of the data mining process. These tools are a
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visual transformation application, interactive outlier detection, interactive dimension reduction,
interactive clustering and the visual group analysis. In this section the functionality of these
applications and their benefits for the user are outlined.

The visual transformation tool provides a set of linear mappings that standardize or
project data values to a certain value range. Additionally non linear functions like the squareroot
and logarithmic transformation allow the adaptation of the distribution of the dimension values,
which is crucial for applications like the distribution based outlier detection. For an interactive
visual verification, if the data items were mapped to a theoretic distribution, a scatterplot shows
the quantiles of either the normal or the uniform distribution versus the ordered transformed
data items. If the plotted objects are positioned near to a line which is laid through the first and
third quartile of these distributions, the data items match the given distribution. Thus an imme-
diate and easy validation of the usefulness of a transformation can be achieved. In figure 6.8
this concept is demonstrated, where finally the squareroot transformation created the mapping
of the data to a normal distributed sample.

The interactive outlier detection calculates the robust distances and Mahalanobis dis-
tances for all data items and plots these values in a scatterplot (figure 6.9). The user is able to
steer the number of detected outliers by changing the decision boundary for this classification
task. Additionally a linked scatterplot view of the data items projected on the first two robust
principal components allows the interactive validation, whether the identified data items are lo-
cated far away from the center of the data cloud (figure 6.11). Consequently the user has the
possibility to detect items that deviate from the average behaviour of the majority of the data
interactively and can verify the computational results immediately.

The interactive dimension reduction tool allows a visual and a computational examination
of the attribute relationships. By using a hierarchical clustering based on the correlation matrix
created from the dataset a dimension grouping and also a variable ordering is introduced. The
latter allows a clearer illustration of the dataset in parallel coordinates in comparison to the
order of the dimensions according to their occurrence in the data. This issue is illustrated in
figure 6.2. Additional flipping operations allow the user to reduce cluttering caused by negative
correlation patterns.
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The hierarchical clustering also creates a dendrogram structure (figure 6.1), which serves
as an interface for the interactive exploration of the dimension groups. If a node is selected the
attributes of the cluster are shown in a parallel coordinates plot (figure 6.3). For the methodical
exploration of these groups it is recommended to choose a level of the dendrogram and thus also
a number of clusters. Afterwards each cluster is scrutinized to detect attributes representing
the same patterns. To accomplish this, the patterns in the parallel coordinates as well as the
correlation measures and the explained variance of the first principal component computed from
selected attributes are applied. If similar variables are found a representative dimension for them
can be chosen.

To find groups in multivariate datasets clustering is a crucial task. For the proof of con-
cept cases an interactive k means clustering approach was realized. After initial partitions have
been established the user can reposition cluster centers within a 2D scatterplot, which illustrates
the data items mapped on the first and the second principal component. The modifications are
projected back into the data space and thus are high dimensional interactions. Additionally a
linked parallel coordinate view also shows the clustering result and the modifications of the
cluster centers. The tool allows to reassign the data items to the cluster with the nearest repo-
sitioned cluster center and a reclustering based on the adaptations introduced by the user. In
the figures 6.4, 6.5, and 6.6 the intermediate results of an interactive clustering workflow are
illustrated.

The tool showed that the input of the user can efficiently improve the cluster result with
respect to the objective function of the clustering or to a user defined quality measure. Thus the
partitions can be interactively fitted to the structure of the data, which is crucial to overcome
disadvantages of k means because of its simple concept. Also functional relationships between
the principal components and the original data dimension can be explored by the interaction
possibilities for the cluster centers.

Finally a visual group analysis tool is provided, where the mean vector of the groups are
compared with the center of the dataset. In this visualization for each dimension the relative
deviation between these two location parameters are expressed by bar diagrams. This provides
a fast visual and also numerical summary of the main characteristics of groups. It also facilitates
the comparison between clusters and consequently helps to comprehend, why data items where
assigned to the same group. An example of this analysis is given in figure 6.7.

As it is necessary to apply each of these tools in any possible order, each of these de-
scribed applications can be started based on the results of the previous step in the workflow.
Consequently transformations of the data can be applied before each clustering, outlier detec-
tion or dimension reduction as well as visual analysis can be accomplished after any classifica-
tion process. Thus this flexible workflow is a further valorisation of this sample application.
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8.5 Library for Statistical Functionality for Visualization

For the determination of statistical functionality that is of high importance for information vi-
sualization applications leading software packages like SpotFire [7], Miner3D [4] or GGobi [2]
were examined. Also publications of recent years, that discuss the integration of computational
approaches in the visual data mining process were analysed. This research showed that the
majority of the applied algorithms are concerned with clustering and dimension reduction. But
also the use of transformations to prepare the data for further procedures was demonstrated
especially in GGobi. Besides of these main tasks also standard calculations like statistical mo-
ments and correlation measures were common.

In the scope of this work also a stronger integration of robust methods should be obtained.
This is shown by implementing robust estimators for the location and the spread of a set of
data values as well as by providing the calculation of robust correlation measures. But the main
application, which demonstrates the capabilities of robustness, is the statistical outlier detection,
which introduces a measure of outlyingness for each data item.

Furthermore the concept of fuzzyness is considered, because decisions made in the real
world, from where the data comes from, are rarely reduced to yes/no answers. The fuzzy k
means clustering was implemented, to show that it is not possible to assign each data item
strictly to one cluster. Thus a degree of uncertainty is introduced to differentiate between objects
that are near a cluster center and those data points that are located at cluster boundaries.

After introducing the main categories of functionality that is made available by the li-
brary, the remainder of this section gives an overview of the provided routines.

8.5.1 Transformations and Moments

Transformations can be seen as mappings of the data values to a certain interval or as modifica-
tions of the distribution of a set of values. The former application is useful to prepare a dataset
for clustering, so that each dimension has the same range of values, which avoids that one at-
tribute has a stronger influence on the distance calculations in the group finding process. The
latter is of importance for statistical routines such as the distribution-based high dimensional
outlier detection, which can only be applied on data from a multivariate elliptical distribution.
For those distribution mappings the statistics library provides linear, logarithmic, exponential
and squareroot transformations.

As transformations are applied on single dimensions separately also statistical moments
are in general calculated for attributes of the dataset. Classic as well as robust estimates for
the location (arithmetic mean, median, α - trimmed mean) and the spread (standard deviation,
median of absolute deviations, inter quartile range) are provided.
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8.5.2 Correlations and Covariances

To analyse the coherence between two variables three correlation measures are implemented.
The classic Pearson correlation, which is biased if outliers are present, and the robust Spearman
and Kendall correlations can be calculated. The two robust estimates do not only detect linear
relationships but also exponential and logarithmic dependencies between dimensions.

A rough estimate for the shape of the multidimensional data cloud is given by the co-
variance matrix, which is a symmetric matrix holding the variances of the attributes in the main
diagonal and the covariances between the dimensions in the off diagonal entries. As the covari-
ance matrix describes the data as a hyperellipsoid it can be applied to integrate the shape of the
data distribution into the distance calculation. This is achieved by the Mahalanobis distance. If
a robust calculation scheme for the covariance matrix like the minimum covariance determinant
estimator [101] is applied, this concept can be used to calculate robust distances that assign high
values to data items that strongly deviate from the majority of data items.

8.5.3 Clustering and Dimension Reduction

For the division of datasets into partitions the popular clustering procedures k means and fuzzy
k means were implemented. While the first algorithm introduces a hard cluster structure, where
each data item is assigned to exactly one group, the fuzzy approach calculates memberships
that indicate to which degree an object belongs to a given cluster. Thereby the sum of the
memberships for a data item always accounts 1. Additionally a hierarchical clustering approach
based on the correlation matrix is realized to introduce groups of dimensions. This routine can
be used as basis for an interactive feature subset selection application.

As dimension reduction routine the principal component analysis (PCA) is provided. It
is based on the covariance matrix calculation. Thus also a robust PCA can be accomplished by
using the MCD estimate as covariance matrix.

8.5.4 Distributions and Statistical Tests

As theoretical distributions the normal, log normal, exponential, uniform and chi-squared dis-
tribution are realized. For each of these distributions values of the probability density function
(pdf) and of the cumulative distribution function as well as quantiles and random numbers are
available. Additionally a Kolmogorov-Smirnov test can be performed to validate, whether a
set of values comes from these theoretical distributions. Furthermore the invocation of tests,
whether two attributes show the same distribution, is possible.
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8.5.5 Regression

A least squares linear regression that predicts the values of a dependent variable based on a
set of independent attributes is implemented. This model fitting approach is convenient for the
identification of functional dependencies between dimensions of a dataset.

8.6 Implementation

The implementation of the statistics library is aimed to operate on large data sets holding mil-
lions of data items. Therefore special attention was paid to process large arrays of data values
as fast as possible. To achieve this goal an implementation in the language C++ was chosen,
which provides efficient pointer operations. The work with C++ also demands a concept for a
failure safe usage of the library. To accomplish this issue all routines return a bool variable in-
dicating false, if the functionality could not be executed correctly. Furthermore the parameters
that are passed to the methods apply to a scheme so that function calls of different procedures
have a similar structure and thus are intuitive to use. The first category of parameters concerns
variables into which the results are written. Afterwards data specific information like dimen-
sion values or mean vectors have to be set. The final class of parameters is concerned with the
properties of the applied algorithm itself. Examples are the number of clusters for a k means
clustering, or the robustness factor for an MCD covariance matrix estimator.

To ease the integration of statistical routines into information visualization applications
the definition of an adequate interface is crucial. Thus so called hooks of interaction have been
realized. These special function calls enable the immediate recalculation of statistical facts
like correlations and moments for subsets of the data items. This is important for applications,
where numerical summaries of selected data items are requested. Those summaries have to be
updated, if the selection changes or if details-on-demand actions are initiated. Besides these
standard adaptations also task specific interface extensions had to be included. Based on the
statistical routine and its visualization several interaction techniques can be specified. Conse-
quently the implications of the user actions have to be translated into parameter settings for
the computational algorithm in the statistical library to adapt its result. This was accomplished
on the basis of the k means clustering. A typical visualization of a result of this partitioning
procedure involves the representation of the data items in colours according to their cluster
membership and the emphasis of the cluster centers. The latter can be used to manipulate the
clustering result by repositioning its centers or selecting clusters to initiate merge and splitting
operations. Those complex adaptations have to be covered by the hooks of interactions and
reformulated into ordinary function calls to allow a reclustering based on the user’s input.
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As functionalities such as the principal component analysis and the robust distance cal-
culation require matrix inversion and determinant evaluation, implementations for these opera-
tions were integrated from the numerical recipes in C [95]. Also correlation computations, the
realization of theoretic distributions and the Kolmogorov-Smirnov test build up on the fast and
stable routines of this repository of basic numerical procedures. Because of the integration of
robust methods, which require the evaluation of a value, having a specified position in a sample,
an efficient routine that returns the k smallest data value of an array was realized [30]. Empirical
tests prove that this method is faster than the application of a quick sort procedure.



Chapter 9

Conclusions and Future work

The collaboration between statistical routines and information visualization is a growing work-
ing area. So far the majority of publications concentrates on the visual presentation of statistical
results and its exploration. But as this work shows much more benefits can be achieved, if both
fields are interactively connected.

The field of information visualization provides a multitude of interaction techniques that
should also be used to influence statistical routines for grouping data items or dimensions as
well as for finding outliers. Applications that try to combine statistics and visualization mostly
lack the capabilities to convey the findings of visual data exploration to the data mining routines.
Thus interactions have to be semantically adapted to the users needs and the possible interfaces
of a statistical procedure. But the modifications by interacting with an information visualization
application that appears as user interface for a data mining algorithm has also be translated into
a reasonable parameter set for this algorithm. Also the creation of a protocol that can record all
interaction steps and maybe also includes semantic information is an important task that has to
be accomplished to reproduce results of a visual data exploration process.

Besides this outlook in the future work of combining visualization and statistics also fun-
damental steps of procedure are not yet fully integrated into visual data mining applications.
The majority of statistical routines assumes that the data satisfies certain constraints with re-
spect to its distribution or value range. Nevertheless this fact is not pointed out explicitly by
publications that suggest the integration of statistical algorithms into a visual data exploration
workflow. This work tried to pay attention to the task of data transformation, which is crucial
for multidimensional operations like clustering, dimension reduction or multivariate outlier de-
tection. Although this observation is a basic principle for using those algorithms, it should be
brought to the user’s mind by integrating corresponding options in an interface steering a statis-
tical procedure, as well as a preparation of the data should be explained in further detail in the
corresponding publications, because it has such a tremendous impact on the achieved results.
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Concerning the statistical routines that are in use for visual data mining applications it
is evident, that the concept of robustness has not yet been considered in large scale. Certainly
robust algorithms introduce additional computational efforts. Nevertheless for the major clas-
sic algorithms a robust version should be provided to compare the results. Deviations in the
solutions may lead to the discovery of interesting facts concerning the data, relativise the blind
trust in the outcome of a statistical analysis and consequently encourage the user to examine
and question the findings.

Also the process of a steady information exchange between the user’s interaction and
numerical summaries that validate or disprove the theses or the reasonableness of the actions
made during the visual data exploration is not yet well established. Interaction possibilities
could be made more efficient, if statistical information is provided, that represents a further
guideline for the user. Numerical summaries that are accommodated to the type of a selection
can assist to make decisions.

The introduced statistical library is one step towards this vision of the integration of
basic statistical routines into visual data mining applications. To continue the exploration of the
benefits of this collaboration concrete applications that use the capabilities of the implemented
routines have to be created. This would allow the extension of the interface that focuses on the
needs of information visualization techniques. Examples that could serve as starting points for
this development have been discussed.
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